Abstract:
A method and apparatus for transmitting aggregated quality of service (QoS) information in a wireless communication system is provided. A first node which controls a first cell configures a combination of aggregated QoS information for each user equipment (UE) which is receiving services from the first cell, and transmitting the combination of aggregated QoS information to a second node which controls a second cell. Upon receiving information combining aggregated QoS information for each UE from a plurality of first nodes, the second node determines whether to switch off a plurality of first cells based on the received information combining aggregated QoS information for each UE.
Abstract:
A method and apparatus for transmitting an indicator in a wireless communication system is provided. According to an embodiment of the present invention, when a source eNodeB (eNB) initiates handover for a user equipment (UE), it informs a target eNB about whether the handover is to avoid in-device coexistence (IDC) interference problems or not. Alternatively, according to another embodiment of the present invention, an eNB, which the UE reestablished, informs an eNB, which radio link failure (RLF) of the UE occurred, about that the cause of UE's RLF was IDC interference.
Abstract:
The disclosure provides a mobile terminal including: a body including a first frame and a second frame configured to slide in a first direction with respect to the first frame and slide in a second direction; a flexible display configured to cover a part of the body, wherein a front surface area of the flexible display is configured to vary according to the sliding of the second frame; and a rolling hinge disposed on a rear surface of the flexible display and deformable in response to bending deformation of the flexible display. The rolling hinge includes: a first rolling sheet including a first hinge hole; a second rolling sheet overlapping with the first rolling sheet, wherein the second rolling sheet includes a second hinge hole overlapping at least partially with the first hinge hole; and a first rivet configured to penetrate the first hinge hole and the second hinge hole.
Abstract:
The present disclosure provides a mobile terminal including: a body including a first frame and a second frame configured to slide to transition to either a first or second state; a flexible display configured to cover a part of the body, wherein a front surface area of the flexible display is configured to vary according to the sliding of the second frame; and a link supporter disposed between the first and second frames, wherein the link supporter comprises: a first link, wherein a first end of the first link is hinge-coupled to the first frame; a second link, wherein a first end of the second link is hinge-coupled to the first link and a second end of the second link is coupled to the second frame; and a hinge cam configured to be inserted a second end of the first link and the first end of the second link.
Abstract:
A flexible display device is disclosed. The flexible display device includes a first body, a second body, a flexible display, an actuator, and a first sensor. The second body reciprocates relative to the first body along a first direction between a first position and a second position. The flexible display includes a first region and a second region. As the second body moves from the first position to the second position, the area of the second region, forming the same plane as the first region, increases. The actuator may be operated such that the second body is moved toward the second position in response to free fall being detected by the first sensor, and damage to the flexible display device due to impact with the ground may thereby be reduced.
Abstract:
A method for transmitting, by a first base station, coverage modification information in a wireless communication system is discussed. The method includes transmitting, by the first base station, the coverage modification information which informs a second base station that modifying a cell managed by the first base station is planned, to the second base station, and after the first base station transmits the coverage modification information to the second base station, modifying, by the first base station, the cell managed by the first base station.
Abstract:
A method and apparatus for transmitting an indication of cell coverage in a wireless communication system is provided. A first eNodeB (eNB) transmits an indication which indicates cell coverage of an active antenna system (AAS) to a second eNB. The indication may be one of a cell split/merge/remove indication.
Abstract:
A method and apparatus for allocating physical cell identities (PCIs) in a wireless communication system is provided. An eNodeB (eNB) allocates PCIs for split cells of an active antenna system (AAS), and transmits information on range of the allocated PCIs for split cells of the AAS to user equipments (UEs) or neighbor eNBs.
Abstract:
A method for performing a handover procedure in a wireless communication system is provided. A first eNodeB (eNB) of a 3rd generation partnership project (3GPP) long term evolution (LTE) system receives information on an access point (AP) of a wireless local area network (WLAN) system, which is located at neighborhood of a second eNB, to which data of the first eNB can be offloaded, from a user equipment (UE) or a second eNB, and decides whether to handover the UE to the second eNB based on the received information on the AP.
Abstract:
A method and apparatus for performing a partial handover procedure in a wireless communication system is provided. An eNodeB (eNB) of a 3rd generation partnership project (3GPP) long term evolution (LTE) system determines E-UTRAN radio access bearers (E-RABs) to be offloaded to an access point (AP) of a wireless local area network (WLAN) system, and transmits an E-RAB release indication message, which includes a list of the E-RABs to be offloaded to the AP and a corresponding cause which is set to “Offload to WLAN”, to a mobility management entity (MME) of the 3GPP LTE system.