Abstract:
The present invention relates to a water dispensing device control method, which includes: a step of allowing a call word in a sound shape uttered from a user to be input into a microphone; a step of identifying the input call word in a sound identifying module and outputting guiding sound of identifying the call word through a speaker; a step of allowing the desired discharge water amount in the sound shape uttered from the user to be input into the microphone; a step of identifying the input desired water discharge amount in the sound identifying module and outputting guiding sound of identifying the water discharge amount through the speaker; a step of allowing a user to input a water discharge order; a step of allowing water discharge to be implemented while a water discharge valve is opened; and a step of allowing the water discharge to be finished while the water discharge valve is closed when the water discharge flow rate detected in a flow rate sensor reaches the input desired water discharge amount.
Abstract:
A water dispensing apparatus may include a dispenser housing at which a container accommodation part accommodating a container is formed to be recessed; a water nozzle provided at an inner surface of the dispenser housing which defines an upper surface of the container accommodation part; a water level detecting member provided at the inner surface of the dispenser housing close to the water nozzle and configured to detect a level of water filled in the container; a target water level input part provided to input the level of water filled in the container; and a water level indicating unit provided at an inner surface of the dispenser housing which defines a side surface of the container accommodation part to indicate a water level on the container.
Abstract:
Provided is a refrigerator. The refrigerator may include a power supply unit configured to power the refrigerator using commercial power, a battery coupled to the power supply unit and configured to supply auxiliary power to the refrigerator, a power detection unit coupled to the power supply unit and the battery and configured to detect whether power is being supplied from the power supply unit, a driving unit to provide cold air, and a controller configured to control an operational mode of the driving unit based on the detection at the power detection unit. When the power supply unit is supplying power, the driving unit may be controlled to operate in a normal operation mode, and when the power supply unit is not supplying power, the driving unit may be controlled to operate in a power failure operation mode and to control the power to be supplied from the battery.
Abstract:
A refrigerator includes a compressor, a cold storage medium, a power supply to convert AC power supplied from an outside of the refrigerator, and to receive DC power during interruption of electric power, and a controller to perform a control operation to supply a cooling capacity to an interior of the refrigerator by driving the compressor based on the supplied AC power when no interruption of electric power occurs, and to perform a control operation to supply a cooling capacity to the interior of the refrigerator based on the supplied DC power and the cold storage medium during the interruption of electric power. Accordingly, consumption of electric power during interruption of electric power is reduced.
Abstract:
Provided is a sensorless BLDC motor apparatus for providing a drive current allowing the rotor of the BLDC motor to be aligned in a predetermined direction during an initial position setting section (or for a first period of time), and providing a drive current allowing a frequency thereof to be varied at predetermined time intervals so as to accelerate the rotational speed of the BLDC motor during an open loop section (or for a second period of time), and a method using the same.