Abstract:
An organic electroluminescent device includes first and second substrates facing and spaced apart from each other; a gate line on an inner surface of the first substrate; a semiconductor layer over the gate line, the semiconductor layer overlying a surface of the first substrate; a data line crossing the gate line; a data ohmic contact layer under the data line, the data ohmic contact layer having the same shape as the data line; a power line parallel to, or substantially parallel to, and spaced apart from the data line, the power line including the same material as the gate line; a switching thin film transistor connected to the gate line and the data line, the switching thin film transistor using the semiconductor layer as a switching active layer; a driving thin film transistor connected to the switching thin film transistor and the power line, the driving thin film transistor using the semiconductor layer as a driving active layer; a connection pattern connected to the driving thin film transistor, the connection pattern including a conductive polymeric material; a first electrode on an inner surface of the second substrate; an organic electroluminescent layer on the first electrode; and a second electrode on the organic electroluminescent layer, the second electrode contacting the connection pattern.
Abstract:
An organic electroluminescent display device includes first and second substrates bonded together, the first and second substrates having a plurality of pixel regions, each pixel region includes a central portion and first and second portions at both sides of the central portion, a driving element on an inner surface of the first substrate within each of the plurality of pixel regions, the driving element being disposed in the central portion, first and second connection electrodes contacting the driving element and disposed in the first and second portions, a first electrode on an inner surface of the second substrate, an organic electroluminescent layer on the first electrode, and a second electrode on the organic electroluminescent layer, the second electrode contacting the first and second connection electrodes.
Abstract:
An organic electro-luminescent display device and a method of fabricating the same are disclosed in the present invention. The organic electro-luminescent display device includes a plurality of pixels on a substrate, a thin film transistor coupled to each pixel, an organic electro-luminescent device coupled to the thin film transistor, a packaging layer on the organic electro-luminescent device, wherein the packaging layer comprises first and second inorganic layers having opposite stresses, and a first organic layer between the first and second inorganic layers.
Abstract:
An organic electroluminescence device includes a first substrate, a first electrode layer formed over the first substrate, an organic light emitting layer formed over the first substrate, a second electrode layer formed over the organic light emitting layer, a second substrate, a seal pattern on an outer portion of the first substrate or the second substrate for forming a cell gap between the two substrates and for attaching the two substrates, and a plurality of cell gap maintaining structures located between the first substrate and the second substrate.
Abstract:
An active matrix organic light emitting device includes a plurality of gate lines and data lines respectively arranged along transverse and longitudinal directions for defining a plurality of pixel regions, a plurality of power lines arranged substantially parallel to the data lines, at least one switching thin film transistor disposed within one of the pixel regions, at least one driving thin film transistor disposed within the one of the pixel regions, an organic light emitting unit formed within the one of the pixel regions to emit light by application of a signal through one of the power lines as the driving thin film transistor is enabled, and a plurality of power supplying lines having at least two layers electrically interconnected to each other, the power supplying lines electrically connected with the plurality of the power lines to supply the signal to each of the power lines.
Abstract:
A dual panel-type active matrix organic electroluminescent device includes a gate line disposed along a first direction on a first substrate, a data line disposed along a second direction on the first substrate, a power line disposed along the second direction on the first substrate and spaced apart from the data line to define a pixel region with the gate and data lines, the power line and the gate line both formed of a same material during a same process, a switching thin film transistor disposed on the first substrate near a crossing of the gate and data lines, a driving thin film transistor disposed on the first substrate near a crossing of the gate and power lines, a connecting pattern within the pixel region on the first substrate formed of an insulating material, and a connecting electrode disposed within the pixel region on the first substrate to cover the connecting pattern and electrically interconnecting the driving thin film transistor to an organic electroluminescent diode.
Abstract:
An organic electroluminescent device includes first and second substrates spaced apart from and facing each other, an organic electroluminescent diode on an inner surface of the second substrate, a gate line formed on an inner surface of the first substrate in a first direction, a data line formed in a second direction crossing the first direction, a power supply line spaced apart from the data line and formed in the second direction, the power supply line made of the same material as the gate line, the power supply line having a power supply link line near a crossing portion of the gate line and the power supply line, a switching thin film transistor at a crossing portion of the gate and data lines, the switching thin film transistor including a first semiconductor layer made of amorphous silicon, a driving thin film transistor at a crossing portion of the switching thin film transistor and the power supply line, the driving thin film transistor including a second semiconductor layer made of amorphous silicon, a connecting electrode connected to the driving thin film transistor and made of the same material as the data line, and an electrical connecting pattern corresponding to the connecting electrode and for electrically connecting the connecting electrode to the organic electroluminescent diode, wherein the switching thin film transistor and the driving thin film transistor further include first and second gate insulating layers, respectively, the first gate insulating layer having the same shape as the first semiconductor layer, the second gate insulating layer having the same shape as the second semiconductor layer.
Abstract:
An active matrix organic electroluminescent display device includes a substrate including a light emitting region having sub pixel regions, a plurality of switching elements on the substrate in the sub pixel regions, a first passivation layer covering the plurality of switching elements and having a plurality of first contact holes exposing the plurality of switching elements, a plurality of first electrodes on the first passivation layer, each first electrode connected to each switching element through each first contact hole, a second passivation layer on the plurality of first electrodes, the second passivation layer having a plurality of openings exposing the plurality of first electrodes and covering edge portions of the plurality of first electrodes, a plurality of organic electroluminescent layers on the second passivation layer, each organic electroluminescent layer contacting each first electrode through each opening, and a second electrode on the plurality of organic electroluminescent layers, wherein the first passivation layer is made of a first organic material having a planarized upper surface and the second passivation layer is made of a second organic material having a formation temperature lower than a formation temperature of inorganic materials.
Abstract:
An organic electroluminescent display device includes first and second substrates facing and spaced apart from each other, the first and second substrates having a plurality of pixel regions and a peripheral region surrounding the plurality of pixel regions, a first pad disposed at the peripheral region on an inner surface of the first substrate, a driving thin film transistor disposed at each of the plurality of pixel regions on the inner surface of the first substrate, the driving thin film transistor including an active layer, a gate electrode, and source and drain electrodes, a first connection electrode structure connected to the drain electrode, a second connection electrode structure connected to the first pad, the second connection electrode structure being the same as the first connection electrode structure, a first electrode on an entire inner surface of the second substrate, the first electrode being connected to the second connection electrode structure, an organic emission layer on the first electrode, a second electrode on the organic emission layer at each of the plurality of pixel regions, the second electrode being connected to the first connection electrode structure, and a sealant attaching the first and second substrates together.
Abstract:
An organic electroluminescent display (ELD) device includes a first substrate, a second substrate spaced apart and facing the first substrate, a plurality of switching thin film transistors and a plurality of driving thin film transistors interconnected on the first substrate, each of the switching thin film transistor and the driving thin film transistor having an active layer, a gate electrode, a source electrode, and a drain electrode, the drain electrode of the driving thin film transistor being extended to the pixel region to have an extended portion, a contact electrode contacting the extended portion of the drain electrode of the driving thin film transistor, a first electrode formed on the second substrate, an organic light-emitting layer on the first electrode, and a second electrode on the organic light-emitting layer.