Abstract:
A method for testing data packet reception characteristics, such as sensitivity and throughput, of a data packet signal transceiver. By monitoring responsive data packet signals returning from a device under test (DUT), it can be determined whether and when the DUT has successfully received valid data packets, received faulty data packets, received valid data packets in a faulty manner, or not received valid data packets. When any of such events are detected, the stimulus data packet signals can be provided in such a manner as to determine whether possible DUT reception problems are related to power level, duration or data rate of the stimulus data packet signals, or to circuitry within DUT without requiring external controls over or querying of the DUT.
Abstract:
An example system includes a signal generator to output signals based on multiple carrier frequencies; a wired transmission medium for carrying the signals, where the wired transmission medium is configured as open ended to produce reflections on the wired transmission medium of the signals; and a signal analyzer to receive the reflections and to determine a transmission time of a signal along the wired transmission medium based on the reflections. The signal analyzer is configured to perform operations that include performing a search based on an estimated transmission time of the signal along the wired transmission medium and the reflections to determine the transmission time. The search is to determine which of multiple candidate transmission times to select for the transmission time.
Abstract:
An example method includes the following operations: (i) receiving a device signal from a device under test (DUT); (ii) setting an attenuation value; (iii) applying the attenuation value to the device signal to produce an attenuated device signal for a frequency spectrum analyzing device, where the frequency spectrum analyzing device produces a noise signal; (iv) obtaining a power spectral density value using the frequency spectrum analyzing device, where a power spectral density comprises a power, at a frequency value, of a combined signal that is based on the attenuated device signal and the noise signal; (v) repeating operations (ii), (iii), and (iv) one or more times to produce multiple power spectral density values; (vi) repeating operations (i), (ii), (iii), (iv), and (v) one or more times to add power spectral density values to the multiple power spectral density values; and (vii) obtaining a power spectral density of the device signal.
Abstract:
A method for testing a data packet signal transceiver device under test (DUT). Following initial signal communications with a DUT, timing of further transmissions by the DUT may be effectively controlled by transmitting congestive communication channel signals to cause the DUT to detect apparent communication channel activity and in response thereto delay its own signal transmissions.
Abstract:
A method for communicating test results from a wireless device under test (DUT) using non-link testing resources. Test data resulting from testing one or more operations of the DUT are combined with other data to form one or more data packets for transmission to a tester. The test data occupies, e.g., via encoding, a portion of the one or more data packets designated for data identifying the DUT or a tester.
Abstract:
A method for coordinating testing of a wireless device under test (DUT) using non-link testing resources. Coordination between the tester and DUT is achieved by transmitting, from the tester to the DUT, predetermined numbers of data packets associated with predetermined tester identification data (e.g., MAC addresses identifying the tester transmitter). During test phases involving measurement and/or calibration of DUT transmit signals, the tester sends a number of data packets associated with one or more versions of tester identification data, in response to which the DUT performs internal operations (e.g., revising transmit power offsets). During later test phases involving validation of DUT performance, the tester sends another number of data packets associated with one or more versions of the tester identification data to inform the DUT that its testing has passed or failed, and/or is to be repeated.
Abstract:
A method for improving accuracy of power measurements of low power radio frequency (RF) signals received by a RF signal receiver in which power measurement accuracy taken at a low resolution is compensated with use of multiple RF signal attenuations at a finer resolution. In accordance with exemplary embodiments, incremental RF signal attenuations are applied to the received RF signal. An average of the power measurements, including those with the applied signal attenuations, has a net measurement error less than that of a direct power measurement.
Abstract:
A method for testing a data packet signal transceiver device under test (DUT) that minimizes time lost due to waiting for respective power levels of data packets transmitted by the DUT to settle at the desired nominal value for transmit signal testing. In accordance with exemplary embodiments, signals transmitted by the DUT during receive signal testing, e.g., as acknowledgement data packets, are transmitted at the nominal value for transmit signal testing, thereby allowing sufficient time for individual data packet signal power levels to settle and remain consistent at the nominal value by the time receive signal testing is completed and transmit signal testing is to begin.
Abstract:
System and method for testing a wireless data packet signal transceiver device under test (DUT) in which external control circuitry manages initiation of execution by a tester of test program instructions defining multiple self-terminating test control sequences in one or more desired sequences. The test control sequences may be pre-stored in a tester for subsequent execution under control of control signals sourced externally by the external control circuitry via separate control signals.
Abstract:
System and method for testing transmission and reception performance of a data packet signal transceiver device under test (DUT). Data packet signals transmitted by a tester with a tester transmit output power (TTOP) contain trigger frames that include data corresponding to a reported tester transmit power (RTTP) of the data packet signals, and a desired received signal strength (TRSS) of DUT data packet signals to be received by the tester. Based on received signal strength of the tester data packet signals reported by the DUT (DRSS), responsive DUT data packet signals having a DUT transmit output power of RTTP-DRSS+TRSS. Successive repetitions of such tester and DUT data packet signals for multiple combinations of values of the TTOP, RTTP and DRSS enable testing transmission and reception performance of the DUT, including determining minimum and maximum DUT transmission power levels, with minimal signal interactions between tester and DUT.