Abstract:
A charging/discharging apparatus uses constant charging current and constant discharging current to reduce the possibility of building memory in the cells of a battery. Memory reduces battery capacity and eventual failure will result since the cells will refuse to take any charge. A charger circuit includes a current source receiving supply voltage to couple constant charging current to the battery and an amplifier is coupled to receive reference voltage from a source and feedback voltage from the battery to connect supply voltage to the current source when the reference voltage is greater than the feedback voltage. A discharger circuit utilizes a current sink receiving supply voltage to couple constant discharging current to the battery. An amplifier receives reference voltage from a source and feedback voltage from the battery to connect supply voltage to the current sink when the reference voltage is less than the feedback voltage. In both charger and discharger applications the current source or current sink maintains a constant current to the battery independently of the magnitude of voltage of the battery. This use of constant current does not rely on battery voltage to charge the cell and can discharge a cell well below the minimum operating voltage. The apparatus is particularly adaptable to recharge NiCad batteries which require specific conditions to properly charge and deep-cycle discharge for maximum life.
Abstract:
The present disclosure provides a selective data acquisition system of a matrix resistive touch panel and a method of using the data acquisition system to selectively acquire data on a touch panel. Each analog signal from the sensing track is tested with its own threshold value to determine whether the characteristics of the analyzed signal are sufficient to constitute a user's actuation on the touchscreen. If the analyzed analog signal exceeds or otherwise clears the threshold, the selective data acquisition system converts the signal into a digital word. Conversely, if the analyzed analog signal falls below or otherwise fails the threshold, the selective data acquisition system does not convert the signal. This process continues for all analog signals from the sensing tracks.
Abstract:
A control method for a brushless, three-phase DC motor. The motor may include a plurality of electromagnets and a rotor. A voltage induced by rotation of a rotor may be sampled at an expected zero crossing value to produce a first sampled voltage value. An average of a plurality of sampled voltage values, including voltage values sampled at a plurality of prior expected zero crossing values, may be calculated. A delta zero crossing error may be calculated. The delta zero crossing error may be calculated based on a difference between the first sampled voltage value and the calculated average. The plurality of electromagnets may be commutated. Commutation timing for the plurality of electromagnets may be determined based at least in part on the delta zero crossing error.
Abstract:
A control method for a brushless, three-phase DC motor. A voltage induced by rotation of a rotor may be sampled at a first expected zero crossing value to produce a first sampled voltage value. An average of a plurality of sampled voltage values, including voltage values sampled at a plurality of prior expected zero crossing values and the first sampled voltage value, may be calculated. The first sampled voltage value may be subtracted from the calculated average to produce a delta zero crossing error. A pulse-width modulation duty cycle may be adjusted based on the delta zero crossing error. The pulse-width modulation duty cycle may be used to control a rotational velocity of the rotor.
Abstract:
A control circuit for controlling the rotational speed of a fan may include a memory element to store operating data corresponding to an operational profile of the fan defined by RPM (revolutions per minute) versus temperature, with the operating data comprising a respective temperature value and a respective RPM value for each respective operating point representing a change in slope of a function that corresponds to the operational profile of the fan. A processing unit may operate to receive a present temperature value, retrieve the operating data from the storage unit, and identify a pair of consecutive operating points such that the present temperature value is greater than a lower respective temperature value of the pair of consecutive operating points, and lower than a higher respective temperature value of the pair of consecutive operating points. The processing unit may calculate a desired RPM value corresponding to the present temperature value by performing linear interpolation between the pair of consecutive operating points, and output the desired RPM value to a closed-loop fan controller configured to control a rotational speed of the fan according at least to the desired RPM value.
Abstract:
A control method for a sensor-less, brushless, three-phase DC motor. A pulse-width modulation (PWM) duty cycle may be calculated. A voltage induced by rotation of a rotor may be sampled at a first expected zero crossing value to produce a first sampled voltage value. An average of a plurality of sampled voltage values, including voltage values sampled at a plurality of prior expected zero crossing values and the first sampled voltage value, may be calculated. The first sampled voltage value may be subtracted from the calculated average to produce a delta zero crossing error (ZCE). The current value of an integral term corresponding to a rotational period may be updated according to the sign of the ZCE. The integral term may be updated periodically and multiple times during each rotational period. The ZCE may be subtracted from the integral term, and the resulting value may be used to generate one or more time values. Operation of the motor may be controlled based on the one or more time values and the PWM duty cycle.
Abstract:
A control circuit for controlling the rotational speed of a fan may include a memory element to store operating data corresponding to an operational profile of the fan defined by RPM (revolutions per minute) versus temperature, with the operating data comprising a respective temperature value and a respective RPM value for each respective operating point representing a change in slope of a function that corresponds to the operational profile of the fan. A processing unit may receive a present temperature value, retrieve the operating data from the storage unit, and identify a pair of consecutive operating points corresponding to the present temperature. The processing unit may calculate a desired RPM value corresponding to the present temperature value by performing linear interpolation between the pair of consecutive operating points, and provide the desired RPM value to a closed-loop fan controller to control the fan according to the desired RPM value.
Abstract:
A motor includes a rotor and a plurality of pairs of electromagnets. The energy needed for alignment of the rotor is used to generate the first movement in forced commutation and may be combined with the initial energy to start the motor. The logic is configured to align the rotor by energizing the three coils of the motor. PWM is applied to the first coil to control current on the coils; when a maximum PWM duty cycle is reached, the coil not required to rotate the correct direction are released, thereby initiating motion in a rotor. A rotation period is determined. One or more pairs of electromagnets are excited at a first excitation level which may be increased, over a second period, to a second level. The second level may be a higher level than the first level. The rotation period may be decreased over the first and second periods.
Abstract:
A system and method are presented for aligning a rotor in a motor. The motor may include the rotor and a plurality of pairs of electromagnets. One or more pairs of electromagnets may be excited at a first excitation level. The one or more pairs of electromagnets may be less than all of the plurality of pairs of electromagnets. The excitation of the one or more pairs of electromagnets may be increased to a second excitation level over a first period of time. The excitation of the one or more pairs of electromagnets may be decreased to a third excitation level over a second period of time. Exciting the one or more pairs of electromagnets, increasing the excitation, and decreasing the excitation may cause the rotor to stop in a known position.
Abstract:
A system and method are presented for aligning a rotor in a motor. The motor may include the rotor and a plurality of pairs of electromagnets. One or more pairs of electromagnets may be excited at a first excitation level. The one or more pairs of electromagnets may be less than all of the plurality of pairs of electromagnets. The excitation of the one or more pairs of electromagnets may be increased to a second excitation level over a first period of time. The excitation of the one or more pairs of electromagnets may be decreased to a third excitation level over a second period of time. Exciting the one or more pairs of electromagnets, increasing the excitation, and decreasing the excitation may cause the rotor to stop in a known position.