-
公开(公告)号:US20190137777A1
公开(公告)日:2019-05-09
申请号:US16182309
申请日:2018-11-06
Applicant: Magic Leap, Inc.
Inventor: Shuqiang Yang , Vikramjit Singh , Kang Luo , Nai-Wen Pi , Frank Y. Xu
CPC classification number: G02B27/4255 , G02B5/1814 , G02B27/0081 , G02B27/0172 , G02B27/4272 , G02B2027/0125 , G02B2027/0174
Abstract: A method of fabricating a diffractive structure with varying diffractive element depth includes providing a shadow mask having a first region with a first aperture dimension to aperture periodicity ratio and a second region with a second aperture dimension to aperture periodicity ratio less than the first aperture dimension to aperture periodicity ratio. The method also includes positioning the shadow mask adjacent a substrate. The substrate comprises an etch mask corresponding to the diffractive structure. The method further includes exposing the substrate to an etchant, etching the substrate to form diffractive elements adjacent the first region having a first depth, and etching the substrate to form diffractive elements adjacent the second region having a second depth less than the first depth.
-
公开(公告)号:US20250147222A1
公开(公告)日:2025-05-08
申请号:US19018967
申请日:2025-01-13
Applicant: Magic Leap, Inc.
Inventor: Matthew C. Traub , Yingnan Liu , Vikramjit Singh , Frank Y. Xu , Robert D. Tekolste , Qizhen Xue , Samarth Bhargava , Victor Kai Liu , Brandon Michael-James Born , Kevin Messer
Abstract: The disclosure describes an improved drop-on-demand, controlled volume technique for dispensing resist onto a substrate, which is then imprinted to create a patterned optical device suitable for use in optical applications such as augmented reality and/or mixed reality systems. The technique enables the dispensation of drops of resist at precise locations on the substrate, with precisely controlled drop volume corresponding to an imprint template having different zones associated with different total resist volumes. Controlled drop size and placement also provides for substantially less variation in residual layer thickness across the surface of the substrate after imprinting, compared to previously available techniques. The technique employs resist having a refractive index closer to that of the substrate index, reducing optical artifacts in the device. To ensure reliable dispensing of the higher index and higher viscosity resist in smaller drop sizes, the dispensing system can continuously circulate the resist.
-
公开(公告)号:US12222537B2
公开(公告)日:2025-02-11
申请号:US18729437
申请日:2023-01-20
Applicant: Magic Leap, Inc.
Inventor: Matthew C Traub , Yingnan Liu , Vikramjit Singh , Frank Y. Xu , Robert D. Tekolste , Qizhen Xue , Samarth Bhargava , Victor Kai Liu , Brandon Michael-James Born , Kevin Messer
Abstract: The disclosure describes an improved drop-on-demand, controlled volume technique for dispensing resist onto a substrate, which is then imprinted to create a patterned optical device suitable for use in optical applications such as augmented reality and/or mixed reality systems. The technique enables the dispensation of drops of resist at precise locations on the substrate, with precisely controlled drop volume corresponding to an imprint template having different zones associated with different total resist volumes. Controlled drop size and placement also provides for substantially less variation in residual layer thickness across the surface of the substrate after imprinting, compared to previously available techniques. The technique employs resist having a refractive index closer to that of the substrate index, reducing optical artifacts in the device. To ensure reliable dispensing of the higher index and higher viscosity resist in smaller drop sizes, the dispensing system can continuously circulate the resist.
-
公开(公告)号:US20250044573A1
公开(公告)日:2025-02-06
申请号:US18717946
申请日:2022-12-16
Applicant: Magic Leap, Inc.
Inventor: Vikramjit Singh , Matthew C. Traub , Frank Y. Xu
Abstract: An eyepiece includes an optical waveguide, a transmissive input coupler at a first end of the optical waveguide, an output coupler at a second end of the optical waveguide, and a polymeric color absorbing region along a portion of the optical waveguide between the transmissive input coupler and the output coupler. The transmissive input coupler is configured to couple incident visible light to the optical waveguide, and the color-absorbing region is configured to absorb a component of the visible light as the visible light propagates through the optical waveguide.
-
15.
公开(公告)号:US12181679B2
公开(公告)日:2024-12-31
申请号:US18319745
申请日:2023-05-18
Applicant: Magic Leap, Inc.
Inventor: Jeffrey Dean Schmulen , Neal Paul Ricks , Samarth Bhargava , Kevin Messer , Victor Kai Liu , Matthew Grant Dixon , Xiaopei Deng , Marlon Edward Menezes , Shuqiang Yang , Vikramjit Singh , Kang Luo , Frank Y. Xu
Abstract: Display devices include waveguides with in-coupling optical elements that mitigate re-bounce of in-coupled light to improve overall in-coupling efficiency and/or uniformity. A waveguide receives light from a light source and/or projection optics and includes an in-coupling optical element that in-couples the received light to propagate by total internal reflection in a propagation direction within the waveguide. Once in-coupled into the waveguide the light may undergo re-bounce, in which the light reflects off a waveguide surface and, after the reflection, strikes the in-coupling optical element. Upon striking the in-coupling optical element, the light may be partially absorbed and/or out-coupled by the optical element, thereby effectively reducing the amount of in-coupled light propagating through the waveguide. The in-coupling optical element can be truncated or have reduced diffraction efficiency along the propagation direction to reduce the occurrence of light loss due to re-bounce of in-coupled light, resulting in less in-coupled light being prematurely out-coupled and/or absorbed during subsequent interactions with the in-coupling optical element.
-
公开(公告)号:US20220365262A1
公开(公告)日:2022-11-17
申请号:US17868485
申请日:2022-07-19
Applicant: Magic Leap, Inc.
Inventor: Shuqiang Yang , Kang Luo , Vikramjit Singh , Frank Y. Xu
Abstract: A method of fabricating a blazed diffraction grating comprises providing a master template substrate and imprinting periodically repeating lines on the master template substrate in a plurality of master template regions. The periodically repeating lines in different ones of the master template regions extend in different directions. The method additionally comprises using at least one of the master template regions as a master template to imprint at least one blazed diffraction grating pattern on a grating substrate.
-
公开(公告)号:US20210191025A1
公开(公告)日:2021-06-24
申请号:US17194878
申请日:2021-03-08
Applicant: Magic Leap, Inc.
Inventor: Shuqiang Yang , Vikramjit Singh , Kang Luo , Nai-Wen Pi , Frank Y. Xu
Abstract: Embodiments of the present disclosure are directed to techniques for manufacturing an eyepiece (or eyepiece layer) by applying multiple, different diffraction gratings to a single side of an eyepiece substrate instead of applying different gratings to different sides (e.g., opposite surfaces) of the substrate. Embodiments are also directed to the eyepiece (or eyepiece layer) that is arranged to have multiple, different diffraction gratings on a single side of the eyepiece substrate. In some embodiments, two or more grating patterns are superimposed to create a combination pattern in a template (e.g., a master), which is then used to apply the combination pattern to a single side of the eyepiece substrate. In some embodiments, multiple layers of patterned material (e.g., with differing refraction indices) are applied to a single side of the substrate. In some examples, the combined grating patterns are orthogonal pupil expander and exit pupil expander grating patterns.
-
公开(公告)号:US10670971B2
公开(公告)日:2020-06-02
申请号:US16165027
申请日:2018-10-19
Applicant: Magic Leap, Inc.
Inventor: Vikramjit Singh , Michael Nevin Miller , Frank Y. Xu , Shuqiang Yang
Abstract: An imprint lithography method of configuring an optical layer includes selecting one or more parameters of a nanolayer to be applied to a substrate for changing an effective refractive index of the substrate and imprinting the nanolayer on the substrate to change the effective refractive index of the substrate such that a relative amount of light transmittable through the substrate is changed by a selected amount.
-
19.
公开(公告)号:US20250028115A1
公开(公告)日:2025-01-23
申请号:US18907129
申请日:2024-10-04
Applicant: Magic Leap, Inc.
Inventor: Robert D. Tekolste , Ryan Jason Ong , Victor Kai Liu , Samarth Bhargava , Christophe Peroz , Vikramjit Singh , Marlon Edward Menezes , Shuqiang Yang , Frank Y. Xu
Abstract: An augmented reality device includes a projector, projector optics optically coupled to the projector, and a substrate structure including a substrate having an incident surface and an opposing exit surface and a first variable thickness film coupled to the incident surface. The substrate structure can also include a first combined pupil expander coupled to the first variable thickness film, a second variable thickness film coupled to the opposing exit surface, an incoupling grating coupled to the opposing exit surface, and a second combined pupil expander coupled to the opposing exit surface.
-
公开(公告)号:US20250020841A1
公开(公告)日:2025-01-16
申请号:US18898376
申请日:2024-09-26
Applicant: Magic Leap, Inc.
Inventor: Vikramjit Singh , Kang Luo , Xiaopei Deng , Shuqiang Yang , Frank Y. Xu , Kevin Messer
Abstract: Diffraction gratings provide optical elements, e.g., in a head-mountable display system, that can affect light, for example by incoupling light into a waveguide, outcoupling light out of a waveguide, and/or multiplying light propagating in a waveguide. The diffraction gratings may be configured to have reduced polarization sensitivity such that light of different polarization states, or polarized and unpolarized light, is incoupled, outcoupled, multiplied, or otherwise affected with a similar level of efficiency. The reduced polarization sensitivity may be achieved through provision of a transmissive layer and a metallic layer on one or more gratings. A diffraction grating may comprise a blazed grating or other suitable configuration.
-
-
-
-
-
-
-
-
-