Abstract:
A delta-sigma analog-to-digital converter (ΔΣ ADC) has a delta-sigma modulator, a decimation filter and an error suppression circuit. The delta-sigma modulator receives an analog input, and converts the analog input into a first digital output. The decimation filter is coupled to the delta-sigma modulator, and generates a second digital output according to the first digital output. The error suppression circuit is coupled to the decimation filter, and receives an error input and injects an error output into the second digital output according to the error input.
Abstract:
A signal processing system includes an analog-to-digital converter (ADC) that is used to convert a first analog value into a first digital value and convert a second analog value into a second digital value. The ADC includes a first digital-to-analog converter (DAC) circuit and a second DAC circuit operating in different voltage domains. A first bit segment and a second bit segment of each digital value are determined via the first DAC circuit and the second DAC circuit, respectively. An analog injection value is injected to the second analog value, the analog injection value is converted from a digital injection value formed by a subset of bits of the second bit segment of the first digital value, and the second bit segment of the second digital value is derived from injecting the digital injection value to a digital value determined by the second DAC circuit.
Abstract:
An electronic device has a transmit circuit and a processing circuit. The processing circuit outputs a first portion of compressive sensing (CS) samples corresponding to a signal segment to another electronic device via the transmit circuit, and selectively outputs a second portion of the CS samples corresponding to the signal segment to another electronic device via the transmit circuit according to a response of another electronic device. In this way, a balance between the compression ratio and the reconstruction quality/speed can be achieved. Moreover, the signal reconstruction performed at the processing circuit may employ a multi-resolution/multi-scale reconstruction scheme to achieve a balance between the dictionary size and the reconstruction quality/speed, and/or may employ a multi-stage reconstruction scheme to achieve a balance between the reconstruction algorithm control setting and the reconstruction quality/speed. In addition, dictionary weighting, online dictionary update, and/or point constraints may be used to improve the reconstruction quality.
Abstract:
The invention provides a system for conversion between analog domain and digital domain with mismatch error shaping, including a DAC, a first injection circuit couple to the DAC, and a second injection circuit coupled to the DAC. The DAC generates a first analog value in response to a first digital value, and generates a second analog value in response to a second digital value. The first injection circuit enables an analog injection value to be injected to the second analog value when the DAC generates the second analog value, wherein the analog injection value is converted from a digital injection value formed by a subset of bits of the first digital value. The second injection circuit combines the digital injection value and one of the following: the second digital value and a related value obtained according to the second analog value.
Abstract:
A comparator has a differential pair circuit and a current control circuit. The differential pair circuit has first and second comparator transistors, and is arranged to compare a first input and a second input according to a clock signal to generate a result indicating whether a difference of the first and second inputs exceeds an internal offset. The current control circuit is coupled in series with the differential pair circuit, and configured to provide unequal abilities of drawing currents for the first and second comparator transistors. An amplifier circuit is also disclosed, having a differential pair circuit, a current control circuit, an amplification circuit and a reset circuit.
Abstract:
A delta-sigma modulator has a delta-sigma modulation loop and a plurality of excess loop delay (ELD) adjustment circuits. The delta-sigma modulation loop converts an analog input into a digital output. The ELD adjustment circuits perform different ELD adjustments according to the digital output for jointly adjusting an ELD of the delta-sigma modulation loop. Besides, a delta-sigma modulation method includes at least the following steps: converting an analog input into a digital output through a delta-sigma modulation loop; and employing different ELD adjustment schemes for jointly adjusting an ELD of the delta-sigma modulation loop according to the digital output.