Abstract:
An apparatus and method for providing a selectively reduced voltage to a portable electronic device are disclosed. When a determination is made that an output voltage from a voltage source exceeds a predefined maximum permitted voltage, a plurality of circuitries, including an adaptive active current limiting circuitry, are enabled in order to derive the reduced voltage from the output voltage. The reduced voltage is at least at or below the predefined maximum permitted voltage and is supplied to the portable electronic device by battery circuitry that includes the active current limiting circuitry.
Abstract:
A method and apparatus for wirelessly charging a chargeable device, such as a smart phone, digital music player, or navigation device, using a wireless charger. The wireless charger includes a connector, a retainer, and a wireless power transmitter. The connector is configured to secure the wireless charger to a visor in a passenger compartment of a vehicle. The retainer is configured to selectively retain a chargeable device having a recipient coil. The wireless power transmitter includes a charging coil configured to carry a fluctuating electric current that generates a changing magnetic field for receipt by a recipient coil of the chargeable device. The changing magnetic field induces a fluctuating electric current in the recipient coil, which is used to charge a battery pack of the chargeable device.
Abstract:
A battery module includes a first load terminal, a second load terminal, a first charger terminal, a charger enable terminal, and a battery having a first battery terminal coupled to the first load terminal and a second terminal coupled to the second load terminal. A first isolation device is coupled between the first load terminal and the first charger terminal and has an enable terminal coupled to the charger enable terminal. A first protection circuit includes a second isolation device coupled between the second battery terminal and the second load terminal and a first sensing circuit configured to enable the second isolation device responsive to detecting a failure of the first isolation device.
Abstract:
Battery circuitry forms part of apparatus for connecting a battery power source to a portable electronic device. The battery circuitry is configured to detect a transitioning of an enable signal, caused by actuation of a power switch, from a de-asserted state to an asserted state. In response to detecting the transitioning of the enable signal, the battery circuitry is further configured to open an electrical path within the battery circuitry. The path, when opened, connects the battery power source in a manner that permits powering on of the portable electronic device.
Abstract:
A method for dynamic limiting of battery voltage includes determining that a voltage delivered by a battery exceeds a predefined maximum safe voltage for operation of a portable electronic device in a hazardous environment and, in response, enabling a voltage restriction circuit in a supply line between the battery and the portable electronic device to reduce the voltage delivered by the battery below the maximum safe voltage, and supplying electrical power to the portable electronic device at the reduced voltage. Enabling the voltage restriction circuit may include deactivating a MOSFET switch that includes a forward biased body diode to allow the body diode to provide a fixed voltage drop. The method also includes determining that the voltage delivered by the battery no longer exceeds the maximum safe voltage and, in response, disabling the first voltage restriction circuit by activating the MOSFET, thus allowing the body diode to be bypassed.
Abstract:
A method for charging a battery includes detecting, with an electronic processor, a presence of the battery coupled to a charging interface. The method includes receiving, with the electronic processor, a command, the command including a charge mode. The method includes, in response to receiving the command, controlling a charging circuit coupled to the charging interface to charge the battery to a predetermined level based on the charge mode. The method includes, when the battery reaches the predetermined charge level, sending a battery control command, based on the charge mode, to control an active limiting circuit of the battery via a single wire data line coupled to the charging interface.
Abstract:
A battery pack selectively coupled to a portable electronic device and/or a recharging source, and configured to inhibit corrosion with discharge blocking features, the battery pack includes a positive terminal, a negative terminal, and a data terminal accessible from a housing of the battery pack, wherein each of the positive terminal, the negative terminal, and the data terminal are coupled to a battery in the battery pack; and a discharge blocking circuit configured to allow/block voltage across the positive terminal and the negative terminal based on a presence of a steady state pull up on the data terminal, wherein the steady state pull up is based on the battery pack being coupled to the recharging source, via the positive terminal, the negative terminal, and the data terminal.