Abstract:
A method and apparatus for visually indicating battery pack information related to wirelessly charging a battery pack via a wireless charging mat. The method includes uniquely associating, with a controller of the wireless charging mat, each visual indicator of a first plurality of visual indicators on the wireless charging mat with one of a first plurality of sensors on the wireless charging mat. The method further includes receiving the battery pack information from the battery pack with one or more of the first plurality of sensors. The method further includes wirelessly charging the battery pack using the wireless charging mat, and illuminating the first plurality of visual indicators based on the battery pack information.
Abstract:
A method for dynamic limiting of battery voltage includes determining that a voltage delivered by a battery exceeds a predefined maximum safe voltage for operation of a portable electronic device in a hazardous environment and, in response, enabling a voltage restriction circuit in a supply line between the battery and the portable electronic device to reduce the voltage delivered by the battery below the maximum safe voltage, and supplying electrical power to the portable electronic device at the reduced voltage. Enabling the voltage restriction circuit may include deactivating a MOSFET switch that includes a forward biased body diode to allow the body diode to provide a fixed voltage drop. The method also includes determining that the voltage delivered by the battery no longer exceeds the maximum safe voltage and, in response, disabling the first voltage restriction circuit by activating the MOSFET, thus allowing the body diode to be bypassed.
Abstract:
An intrinsically safe audio power circuit includes redundant electronic fuses disposed between the power input of an audio power amplifier and the battery source of the portable two-way radio device. The electronic fuse circuits are connected in series with each other, and each electronic fuse circuit includes a series switch transistor that can shut off the flow of current between the battery and the audio power amplifier. Each electronic fuse circuit also includes a current sense portion, and when the current through the electronic fuse circuits reaches a current threshold, it will shut off its series switch transistor using an active bias circuit in order to ensure sufficiently rapid shut off.
Abstract:
A battery, method and battery operated portable communication device are provided with protection from excessive current and thermal conditions. A plurality of protection circuits are coupled in series within a common charge/discharge path of the battery. The first protection circuit is configured to block current by opening a switch in response to a voltage drop across the switch and a current sense resistor in the common charge/discharge path. The second protection circuit provides redundancy under conditions where the first switch might fail, where the second switch will block current through the current sense resistor.
Abstract:
An apparatus and method for providing a selectively reduced voltage to a portable electronic device are disclosed. When a determination is made that an output voltage from a voltage source exceeds a predefined maximum permitted voltage, a plurality of circuitries, including an adaptive active current limiting circuitry, are enabled in order to derive the reduced voltage from the output voltage. The reduced voltage is at least at or below the predefined maximum permitted voltage and is supplied to the portable electronic device by battery circuitry that includes the active current limiting circuitry.
Abstract:
A battery module includes a first load terminal, a second load terminal, a first charger terminal, a charger enable terminal, and a battery having a first battery terminal coupled to the first load terminal and a second terminal coupled to the second load terminal. A first isolation device is coupled between the first load terminal and the first charger terminal and has an enable terminal coupled to the charger enable terminal. A first protection circuit includes a second isolation device coupled between the second battery terminal and the second load terminal and a first sensing circuit configured to enable the second isolation device responsive to detecting a failure of the first isolation device.
Abstract:
A system comprises a battery and a battery-powered device. Battery contacts and a data interface are therebetween. The battery includes low-power and high-power circuits to output power, from a cell, to the battery-powered device via the contacts. The high-power circuit outputs power higher than the low-power circuit. A switch(es) connects and disconnects the high-power circuit to/from the contacts, the low-power circuit connected to the contacts when the switch disconnects the high-power circuit. A voltage detector: detects a battery-voltage on the contacts and an output voltage on the data interface; when the output voltage is greater than the battery-voltage, controls the switch to connect the high-power circuit to the contacts; and when the output voltage is below the battery-voltage, controls the switch to disconnect the high-power circuit from the contacts. The battery-powered device provides the output voltage on the data interface as powered from the contacts by the battery.
Abstract:
A battery module includes a first load terminal, a second load terminal, a first charger terminal, a charger enable terminal, and a battery having a first battery terminal coupled to the first load terminal and a second terminal coupled to the second load terminal. A first isolation device is coupled between the first load terminal and the first charger terminal and has an enable terminal coupled to the charger enable terminal. A first protection circuit includes a second isolation device coupled between the second battery terminal and the second load terminal and a first sensing circuit configured to enable the second isolation device responsive to detecting a failure of the first isolation device.
Abstract:
Battery circuitry forms part of apparatus for connecting a battery power source to a portable electronic device. The battery circuitry is configured to detect a transitioning of an enable signal, caused by actuation of a power switch, from a de-asserted state to an asserted state. In response to detecting the transitioning of the enable signal, the battery circuitry is further configured to open an electrical path within the battery circuitry. The path, when opened, connects the battery power source in a manner that permits powering on of the portable electronic device.
Abstract:
A method for dynamic limiting of battery voltage includes determining that a voltage delivered by a battery exceeds a predefined maximum safe voltage for operation of a portable electronic device in a hazardous environment and, in response, enabling a voltage restriction circuit in a supply line between the battery and the portable electronic device to reduce the voltage delivered by the battery below the maximum safe voltage, and supplying electrical power to the portable electronic device at the reduced voltage. Enabling the voltage restriction circuit may include deactivating a MOSFET switch that includes a forward biased body diode to allow the body diode to provide a fixed voltage drop. The method also includes determining that the voltage delivered by the battery no longer exceeds the maximum safe voltage and, in response, disabling the first voltage restriction circuit by activating the MOSFET, thus allowing the body diode to be bypassed.