Abstract:
A housing (100) provides electrostatic discharge protection and structural robustness for a portable communication device. A hybrid formation of an inner housing portion (102) composed a non-ESD material provides for robustness and an outer housing portion (104) formed of ESD material provides improved grounding.
Abstract:
Techniques for converged incident management workflows between private and public safety are provided. A workflow server connected to a network and associated with an enterprise detects that a workflow has been initiated. The workflow includes an action to request a public safety response. A workflow identifier for the workflow that has been initiated is sent to a public safety network. Information associated with the workflow that has been initiated is sent to the public safety network. An indication of capabilities of the public safety response is received. The workflow server creates at least one of a trigger node and an action node associated with the indication of capabilities of the public safety response. At least one existing workflow within the workflow server is modified to include the at least one of the trigger node an action node associated with the indication of capabilities of the public safety response.
Abstract:
A communication device and a detachable antenna with dynamic antenna tuning is provided. The detachable antenna comprises: an electrically insulating base; a main antenna and a first antenna element, at the base, respectively operable at independent first and second given frequencies. The device further comprises: a memory associating the first and second given frequencies; an antenna port configured to detachably receive the base of the detachable antenna; a second antenna element, at the antenna port, operable to wirelessly interact with the first antenna element when the base of the detachable antenna is received at the antenna port; a circuit configured to detect wireless interactions between the second antenna element and the first antenna element; and a controller configured to: select the first given frequency using the second given frequency, as detected via the circuit; and, thereafter wirelessly communicate via the main antenna operated at the first given frequency.
Abstract:
A method and device for wireless power transfer is provided. The device includes a plurality of charging holders positioned adjacent to each other. The method includes generating a first magnetic field using a first transmit coil in a first charging holder. The method further includes generating a second magnetic field using a second transmit coil in a second charging holder positioned adjacent to the first charging holder. The method further includes magnetically coupling the first and second magnetic field to a receive coil of a portable electronic device, wherein magnetically coupling includes transferring power from the first and second magnetic field to the receive coil of the portable electronic device, the first magnetic field and the second magnetic field configured to have a synchronized phase.
Abstract:
A user interface apparatus and method are provided for gloved and non-gloved touch sensitive button actuation. A user interface (100) embodied as a body wearable harness (104) provides a touch button control system having an activation button (120) and functional touch sensitive control buttons (108, 110, 140). The activation button (120) has a capacitive touch element (130) associated therewith that determines gloved or non-gloved operation based on a capacitive measurement taken in response to a finger input to the button. A plurality of control buttons (108, 110, and 140) are automatically assigned increased sensitivity levels in response to detected gloved mode operation in accordance with the measurement. The increased sensitivity levels allow various radio functions to be accessed by a gloved finger input during gloved mode operation with increased reliability. Additional control button identification can be added through the addition of vibrational alerts. Display and screen type control buttons can further be combined into larger and fewer buttons for ease of gloved landing.
Abstract:
A portable, wearable radio includes a modular harness having the flexibility to be reconfigured into a plurality of different profiles, the modular harness having an interior and a plurality of radio components removably disposed within the interior of the modular harness. The plurality of radio components includes a first radio component, a second radio component electrically coupled to the first radio component via a first flexible electrical connector, and a third radio component electrically coupled to the first radio component via at least one of a group selected from the first flexible electrical connector and a second flexible electrical connector.
Abstract:
A method and circuitry for detecting a touch on a device is provided herein. Touch-sensing circuitry comprises two antennas coupled to two voltage-controlled oscillators (VCOs). A phase locked loop (PLL) is provided coupled to the VCOs. The PLL compares a VCO output with a frequency source (temperature controlled crystal oscillator (TCXO)), and outputs a tuning voltage (steering voltage) for the VCO that is based on the difference between the VCO frequency and the TCXO frequency. The steering voltages for each VCO are compared, and a decision is made as to whether or not a touch has been made to the antennas. If the antennas have been touched, a location of the touch is determined based on a difference in the steering voltages of the two VCOs.
Abstract:
A slide actuation apparatus includes a bezel configured to maintain a configuration of the slide actuation apparatus. The bezel also includes an opening on an external surface. The slide actuation apparatus also includes an actuator configured to move within a compartment formed by the opening and a sliding rail configured to guide movements of the actuator along a surface of the sliding rail. The sliding rail is compressible downward in response to movement of the actuator along the surface of the sliding rail. The slide actuation apparatus further includes a slide contact configured to make an electrical connection to a flexible circuit and configured to provide a signal of a change to a circuit board of an attached computing device in response to downward compression of the sliding rail.