摘要:
An optical amplifier may be quickly returned from a shutdown state to a regular state after getting recovery information of a fault. Gain setting by ASE is conducted to the repeaters on the up-stream side during the shutdown state, by outputting ASE light with the same intensity as the WDM signal. Accordingly, before realizing the recovery of shutdown, the gain setting is completed with the light whose intensity is within the safe criterion. After realizing the recovery of shutdown, the optical transmission system can be returned quickly to the regular operating state after recovery of shutdown state.
摘要:
An optical amplifier may be quickly returned from a shutdown state to a regular state after getting recovery information of a fault. Gain setting by ASE is conducted to the repeaters on the up-stream side during the shutdown state, by outputting ASE light with the same intensity as the WDM signal. Accordingly, before realizing the recovery of shutdown, the gain setting is completed with the light whose intensity is within the safe criterion. After realizing the recovery of shutdown, the optical transmission system can be returned quickly to the regular operating state after recovery of shutdown state.
摘要:
In particular embodiments, providing signal reachability information to a network includes establishing signal reachability information at a network node of the network. The signal reachability information describes attributes that affect reachability of an optical signal. The signal reachability information is inserted into an advertisement, and the advertisement is sent to network nodes of the network.
摘要:
The present invention relates to an apparatus for controlling a gain of an optical amplifier, and the apparatus comprises a target gain calculating unit for calculating, as a target gain for an optical amplifier, a value obtained by increasing or decreasing a gain (output) of signal light as the number of wavelengths of wavelength-multiplexed signal light decreases, and a control signal outputting unit for outputting a control signal to the optical amplifier so as to amplify the wavelength-multiplexed signal light with the target gain calculated by the target gain calculating unit. This promptly suppresses a fluctuation of signal light level, particularly, a fluctuation of output light power of an optical amplifier stemming from a variation of the number of wavelengths of wavelength-multiplexed signal light.
摘要:
Two rare earth-doped optical fibers are connected in series and used to amplify input light. A splitter is installed between these two rare earth-doped optical fibers. The input light is monitored by having the portion of the input light that is branched off, by the splitter received by a photodiode. Excitation light output from a laser light source is guided by optical couplers and supplied to the above rare earth-doped optical fibers. A control circuit controls the output light level and, at the same time, stops the output from the laser light source when the input light level drops below a specified threshold value. The gain of the first stage rare earth-doped optical fiber while excitation light is being supplied is larger than the loss that occurs due to branching of the input light by the splitter.
摘要:
Two rare earth-doped optical fibers are connected in series and used to amplify input light. A splitter is installed between these two rare earth-doped optical fibers. The input light is monitored by having the portion of the input light that is branched off by the splitter received by a photodiode. Excitation light output from a laser light source is guided by optical couplers and supplied to the above rare earth-doped optical fibers. A control circuit controls the output light level and, at the same time, stops the output from the laser light source when the input light level drops below a specified threshold value. The gain of the first stage rare earth-doped optical fiber while excitation light is being supplied is larger than the loss that occurs due to branching of the input light by the splitter.
摘要:
In particular embodiments, providing signal reachability information to a network includes establishing signal reachability information at a network node of the network. The signal reachability information describes attributes that affect reachability of an optical signal. The signal reachability information is inserted into an advertisement, and the advertisement is sent to network nodes of the network.
摘要:
Each network device holds as a database parameters relating to the size of a factor of signal degradation of the device, and relays the parameters according to a path through which a signal passes. When each network device receives a relayed parameter, it accumulates the parameter of the device to the received parameter value, and transmits the result to the network device at the next stage. The network device on the terminating side of the path estimates the size of the degradation of the signals in the entire path using the received parameter, thereby determining the reachability as to whether or not a signal can be transmitted through the path.
摘要:
An optical amplifier, provided in a WDM transmission system, contains an amplification medium for amplifying WDM light, a measurement part for measuring at least one input optical power of the WDM light on both input and output sides of the amplification medium, a variable gain equalizer for variably setting a passing-wavelength characteristic, a database for holding data representing wavelength characteristics that respectively correspond to transmission line types, an arithmetic part for computing an inverted passing-wavelength characteristic resulting from a passing-wavelength, based on an acquired transmission line type, the optical power measured by the measurement part, and the data held in the database, and a setting part for setting a passing-wavelength characteristic of the variable gain equalizer, based on the inverted passing-wavelength characteristic computed by the arithmetic part, and with this, capable of controlling optical filters more quickly and amplifying optical signals more efficiently in WDM systems.
摘要:
An optical power monitor for an optical signal having a signal spectrum superimposed on a noise spectrum. Typically, the optical power monitor includes an optical coupler, first and second optical band-pass filters, first and second photodetectors, and an operating unit. The optical coupler branches the optical signal into first and second beams. The first optical band-pass filter has a first pass band including the signal spectrum, and the first beam is supplied to the first optical band-pass filter. The second optical band-pass filter has a second pass band including the signal spectrum and narrower than the first pass band, and the second beam is supplied to the second optical band-pass filter. The first photodetector receives the first beam passed through the first optical band-pass filter, and the second photodetector receives the second beam passed through the second optical band-pass filter. The operating unit calculates the power of the optical signal according to output signals from the first and second photodetectors. Since the first and second optical band-pass filters have different pass bands, the power of the optical signal relating to the signal spectrum can be precisely monitored with no effects of the noise spectrum.