摘要:
A large deformation tensile testing system, for use in testing a large deformation tensile of an anchor rod or an anchor rode, comprising a main machine frame (1), a rear collet component (2) arranged at a first position on the longitudinal direction of the main machine frame (1), a front collet component (3) movably arranged at a second position on the longitudinal direction of the main machine frame (1), a telescoping apparatus (4), a measurement and control apparatus, where a sensor module thereof senses the displacement and real-time tensile of the telescoping apparatus to form real-time data to be transmitted to an analysis module and a control module, the control module that controls, on the basis of a set measurement and control scheme and of an input of the sensor module, a testing process to proceed according to a set testing condition, the analysis module for analyzing the input of the sensor module to form a test result, and an output module for outputting same. The large deformation tensile testing system is capable of deriving a statics parameter of the anchor rod or anchor rode being tested.
摘要:
A constant-resistance large-deformation anchor rod includes a rod body (6), a tray (3), a nut (2), and a constant-resistance device (4). The constant-resistance device (4) is formed into a cylindrical structure, and the inner surface of the constant-resistance device (4) and the outer surface of the rod body (6) are both formed with thread structures. The constant-resistance device (4) is sleeved at the tail of the rod body (6), and the tray (3) and the nut (2) are sequentially sleeved at the tail of the constant-resistance device (4). The nut (2) is in threaded connection with the constant-resistance device (4). The constant-resistance large-deformation anchor rod in the invention can be automatically stretched when the tunnel surrounding rock deforms largely, and keep the constant working resistance.
摘要:
A constant-resistance and large deformation anchor cable and a constant-resistance device are provided. The constant-resistance and large deformation anchor cable comprises cables (7), an anchoring device (13), a loading plate (12) and clipping sheets (4). The upper end of cables (7) is fixed on the anchoring device (13) and the loading plate (12) by clipping sheets (4). The constant-resistance and large deformation anchor cable also comprises a constant-resistance device, and the constant-resistance device comprises a sleeve (8) and a constant-resistance body (5). The sleeve (8) is a straight tube. The constant-resistance body is conical, and the diameter of the lower end of the constant-resistance body is bigger than the diameter of the upper end of the constant-resistance body. The inner diameter of the sleeve (8) is smaller than the diameter of the lower end of the constant-resistance body. A cuneiform part is arranged on inner wall of the lower end of the sleeve (8), and the constant-resistance body (5) is arranged on the cuneiform part. The strength of constant-resistance body (5) is higher than the strength of the sleeve (8), thus the sleeve (8) generates plastic deforming and the shape of the constant-resistance body (5) is not changed, when the constant-resistance body (5) moves in the sleeve (8). The lower end of the cables (7) is fixed on the constant-resistance body (5). The constant-resistance and large deformation anchor cable and the constant-resistance device have the properties of constant-resistance and preventing fracture, and can detect and early warn the all process of the activity of the landslides and the causative fault.
摘要:
An experimental method for simulating an impact rock-burst, comprises the following steps: making a rock sample having a through hole or a half hole; loading initial static stresses of three directions onto the rock sample; then loading dynamic load(s) by 0.5-10 minutes, to determine whether a spalling phenomenon appears on an internal surface of the hole; if appears, and the rock sample is further damaged, determining and recording a failure course, if not appears, increasing the static stress(es) or the intensity of the dynamic load, then repeating the experiment procedure as far as the rock sample goes into the failure course, then determining and recording the failure course, and ending the expierment. The impact rockburst induced by dynamic load is simulated in the rock sample successfully, and by sudying mechanical mechanisms of the rock-burst, the present application lays foundations for gradually understanding and mastering the nature of real rock burst.
摘要:
A constant-resistance and large deformation anchor cable and a constant-resistance device are provided. The constant-resistance and large deformation anchor cable comprises cables (7), an anchoring device (13), a loading plate (12) and clipping sheets (4). The upper end of cables (7) is fixed on the anchoring device (13) and the loading plate (12) by clipping sheets (4). The constant-resistance and large deformation anchor cable also comprises a constant-resistance device, and the constant-resistance device comprises a sleeve (8) and a constant-resistance body (5). The sleeve (8) is a straight tube. The constant-resistance body is conical, and the diameter of the lower end of the constant-resistance body is bigger than the diameter of the upper end of the constant-resistance body. The inner diameter of the sleeve (8) is smaller than the diameter of the lower end of the constant-resistance body. A cuneiform part is arranged on inner wall of the lower end of the sleeve (8), and the constant-resistance body (5) is arranged on the cuneiform part. The strength of constant-resistance body (5) is higher than the strength of the sleeve (8), thus the sleeve (8) generates plastic deforming and the shape of the constant-resistance body (5) is not changed, when the constant-resistance body (5) moves in the sleeve (8). The lower end of the cables (7) is fixed on the constant-resistance body (5). The constant-resistance and large deformation anchor cable and the constant-resistance device have the properties of constant-resistance and preventing fracture, and can detect and early warn the all process of the activity of the landslides and the causative fault.
摘要:
An NPR steel material for rock bolt and a production method thereof are disclosed. The NPR steel material for rock bolt has a composition, in weight percent, consisting of: C: 0.4-0.7%, Mn: 15-20%, Si: ≤0.1%, Cu: ≤0.03%, Cr: ≤0.01%, Ni: ≤0.02%, S: ≤0.001%, P: ≤0.001%, and the rest being Fe and unavoidable impurity elements. The NPR steel material for rock bolt and the production method thereof effectively solve the problem that rock bolts in the prior art have low tensile strength and low effective elongation. The NPR steel material for rock bolt has a yield strength adjustable in the range of 500-1100 MPa, and an elongation adjustable in the range of 10-80%.
摘要:
An equipment system for a self-retaining mining method mainly comprises a transition support, an end support, a following support, and a fast-retracting support. Working face gateroads do not need to advance in mining, and a coal mining machine may be used to cut a neat coal wall at the end of a district. The entry rib is automatically formed after roof caving, thus forming a gateroad in a re-mining process. The coal mining machine is under digital control when its end cuts the coal, automatically enabling the end to laterally cut the coal wall to form a vertical straight line, which is used as the entry rib of the gateroad. A scrapper conveyor works in coordination with an arc-shaped coal grabbing plate of the coal mining machine to clean up float coal at the end as much as possible.
摘要:
A simulated impact-type rock burst experiment apparatus includes a bracket, a specimen box assembly, an X-direction, Y-direction and Z-direction loading mechanisms mounted on the bracket, and control systems. Each loading mechanism includes four supporting posts in a rectangular arrangement, a first and second frames aligned with each other and fixedly connected to both ends of the four supporting posts, a loading hydraulic cylinder and a lead screw mounted on the two frames respectively.
摘要:
A system and method for testing gas migration process in the coal and rock mass are disclosed. The method includes the following steps: selecting a cylindrical coal sample, applying an axial pressure and a radial pressure to the coal sample under a sealing state, and/or increasing temperature, to desorb gas absorbed by the coal sample; guiding the gas desorbed from the coal sample by a guiding passage, detecting gas flow rate and pressure, analyzing gas composition and content, and achieving a data statistics. The method provides a theory and data basis for researching the forming and occurring process of gas outburst accident in coal mine. The system is simple and easy to use, and is suitable for migration research of the gas absorbed in the deep coal-rock mass.