摘要:
A constant-resistance and large deformation anchor cable and a constant-resistance device are provided. The constant-resistance and large deformation anchor cable comprises cables (7), an anchoring device (13), a loading plate (12) and clipping sheets (4). The upper end of cables (7) is fixed on the anchoring device (13) and the loading plate (12) by clipping sheets (4). The constant-resistance and large deformation anchor cable also comprises a constant-resistance device, and the constant-resistance device comprises a sleeve (8) and a constant-resistance body (5). The sleeve (8) is a straight tube. The constant-resistance body is conical, and the diameter of the lower end of the constant-resistance body is bigger than the diameter of the upper end of the constant-resistance body. The inner diameter of the sleeve (8) is smaller than the diameter of the lower end of the constant-resistance body. A cuneiform part is arranged on inner wall of the lower end of the sleeve (8), and the constant-resistance body (5) is arranged on the cuneiform part. The strength of constant-resistance body (5) is higher than the strength of the sleeve (8), thus the sleeve (8) generates plastic deforming and the shape of the constant-resistance body (5) is not changed, when the constant-resistance body (5) moves in the sleeve (8). The lower end of the cables (7) is fixed on the constant-resistance body (5). The constant-resistance and large deformation anchor cable and the constant-resistance device have the properties of constant-resistance and preventing fracture, and can detect and early warn the all process of the activity of the landslides and the causative fault.
摘要:
A constant-resistance and large deformation anchor cable and a constant-resistance device are provided. The constant-resistance and large deformation anchor cable comprises cables (7), an anchoring device (13), a loading plate (12) and clipping sheets (4). The upper end of cables (7) is fixed on the anchoring device (13) and the loading plate (12) by clipping sheets (4). The constant-resistance and large deformation anchor cable also comprises a constant-resistance device, and the constant-resistance device comprises a sleeve (8) and a constant-resistance body (5). The sleeve (8) is a straight tube. The constant-resistance body is conical, and the diameter of the lower end of the constant-resistance body is bigger than the diameter of the upper end of the constant-resistance body. The inner diameter of the sleeve (8) is smaller than the diameter of the lower end of the constant-resistance body. A cuneiform part is arranged on inner wall of the lower end of the sleeve (8), and the constant-resistance body (5) is arranged on the cuneiform part. The strength of constant-resistance body (5) is higher than the strength of the sleeve (8), thus the sleeve (8) generates plastic deforming and the shape of the constant-resistance body (5) is not changed, when the constant-resistance body (5) moves in the sleeve (8). The lower end of the cables (7) is fixed on the constant-resistance body (5). The constant-resistance and large deformation anchor cable and the constant-resistance device have the properties of constant-resistance and preventing fracture, and can detect and early warn the all process of the activity of the landslides and the causative fault.
摘要:
A large deformation tensile testing system, for use in testing a large deformation tensile of an anchor rod or an anchor rode, comprising a main machine frame (1), a rear collet component (2) arranged at a first position on the longitudinal direction of the main machine frame (1), a front collet component (3) movably arranged at a second position on the longitudinal direction of the main machine frame (1), a telescoping apparatus (4), a measurement and control apparatus, where a sensor module thereof senses the displacement and real-time tensile of the telescoping apparatus to form real-time data to be transmitted to an analysis module and a control module, the control module that controls, on the basis of a set measurement and control scheme and of an input of the sensor module, a testing process to proceed according to a set testing condition, the analysis module for analyzing the input of the sensor module to form a test result, and an output module for outputting same. The large deformation tensile testing system is capable of deriving a statics parameter of the anchor rod or anchor rode being tested.
摘要:
An experimental method for simulating an impact rock-burst, comprises the following steps: making a rock sample having a through hole or a half hole; loading initial static stresses of three directions onto the rock sample; then loading dynamic load(s) by 0.5-10 minutes, to determine whether a spalling phenomenon appears on an internal surface of the hole; if appears, and the rock sample is further damaged, determining and recording a failure course, if not appears, increasing the static stress(es) or the intensity of the dynamic load, then repeating the experiment procedure as far as rock sample goes into the failure course, then determining and recording the failure course, and ending the expierment. The impact rockburst induced by dynamic load is simulated on the rock sample successfully, and by studying mechanical mechanisms of the rock-burst, the present application lays foundations for gradually understanding and mastering the nature of real rock burst.
摘要:
An experimental method for simulating an impact rock-burst, comprises the following steps: making a rock sample having a through hole or a half hole; loading initial static stresses of three directions onto the rock sample; then loading dynamic load(s) by 0.5-10 minutes, to determine whether a spalling phenomenon appears on an internal surface of the hole; if appears, and the rock sample is further damaged, determining and recording a failure course, if not appears, increasing the static stress(es) or the intensity of the dynamic load, then repeating the experiment procedure as far as the rock sample goes into the failure course, then determining and recording the failure course, and ending the expierment. The impact rockburst induced by dynamic load is simulated in the rock sample successfully, and by sudying mechanical mechanisms of the rock-burst, the present application lays foundations for gradually understanding and mastering the nature of real rock burst.