Abstract:
A method of fabricating a component for use in a watch includes a step of depositing a first thin film on a wafer wherein the first thin film is adapted to allow light reflected away from the wafer to be indicative of a first color characteristic. The step of depositing the first thin film is performed by using a plasma-enhanced chemical vapor deposition process or a low pressure chemical vapor deposition process. The method may further include a step of fabricating a second color characteristic, including defining a pattern on the first thin film using photolithography, and, processing a region within a boundary of the pattern so that the region is adapted to allow light reflected away from the wafer to be indicative of the second color characteristic. The step of processing the region within the boundary of the pattern includes depositing a metal or a ceramic material within the boundary of the pattern which is indicative of the second color characteristic. The step of processing the region within the boundary of the pattern may also include depositing a second thin film within the region within the boundary of the pattern.
Abstract:
A method of forming one or more protrusions on an outer surface of a polished face of a solid state material, said method including the step of applying focused inert gas ion beam local irradiation towards an outer surface of a polished facet of a solid state material in a way of protruding top surface material; wherein irradiated focused inert gas ions from said focused inert gas ion bean penetrate the outer surface of said polished facet of said solid state material; and wherein irradiated focused inert gas ions cause expansive strain within the solid state crystal lattice of the solid state material below said outer surface at a pressure so as to induce expansion of solid state crystal lattice, and form a protrusion on the outer surface of the polished face of said solid state material.