摘要:
A system and method for increasing the efficiency and/or power produced by an integrated gasification combined cycle system by increasing the integration between the air separation unit island, the heat recovery steam generator and the remainder of the system. By integrating heat produced by the heat recovery steam generator in the remainder of the integrated gasification combined cycle system, heat may be utilized that may have otherwise been lost or used further downstream in the system. The integration helps to increase the efficiency of the combustion reaction and/or the gasification reaction used to produce the syngas utilized in the integrated gasification combined cycle system.
摘要:
A power plant may include a combustion apparatus (11) producing an exhaust gas (12), an absorber (20) receiving the exhaust gas (12), the absorber (20) including a desiccant and producing a first stream of desiccant solution containing water and a first concentration of desiccant, and an apparatus (29, 70, 94) for dehydrating the first stream of desiccant solution while maintaining the water in a liquid phase. The apparatus (29, 70, 94) may include a heat exchanger (71, 110), a crystallizing heat exchanger (74, 96), a separator (78, 98) and a flash tank (112) for dehydrating the desiccant solution while maintaining water in a liquid phase and subsequently recovering water from the solution.
摘要:
A combined cycle power plant (20) including a main air-cooled condenser (22) condensing steam at a first pressure and an auxiliary air-cooled condenser (24) condensing steam at a second pressure higher than the first pressure. Designing an air-cooled combined cycle power plant for startup on a hot day can significantly increase the size and cost of the required air-cooled condenser. Adding an auxiliary air-cooled condenser having appropriate thermal characteristics relative to a main air cooled compressor to the steam bypass circuit of an air-cooled combined cycle power plant enables the plant to meet plant startup requirements during periods of peak thermal load in a more cost effective manner than would be achievable with the main air cooled condenser alone.
摘要:
A steam power plant (100) implementing an improved Rankine cycle (55) wherein steam is injected (82, 96) directly into the energy addition portion of the plant, and the resulting two-phase flow is pressurized by multiphase pumps (88, 98). By relying more heavily on pump pressurization than on a temperature difference for energy injection, plant efficiency is improved over prior art designs since energy injection by pump pressurization results in less irreversibility than energy injection by temperature difference. Direct steam injection and multiphase pumping may be used to bypass the condenser (20), to replace any one or all of the feedwater heaters (24, 32, 34), and/or to provide additional high-pressure energy addition.
摘要:
A system (10) and method of modifying a combined cycle power generation system (12, 14, 16, 18). In one embodiment of the invention an existing system includes one or more first gas turbines, one or more first steam turbines, and one or more heat recovery steam generators (HRSGs). An exemplary method includes providing at least one second gas turbine of greater operating efficiency than each of the one or more first gas turbines and connecting at least one existing HRSG to receive exhaust output from the second gas turbine to generate steam. Also according to the invention a path is provided for mixing steam exiting a high pressure steam turbine with steam generated in a low pressure HRSG to route such mixed steam through a reheat section of a high temperature, high pressure HRSG so that reheated mixed steam exiting the reheat section can be routed into a low pressure steam turbine.
摘要:
A recuperative steam cooled gas turbine in which steam used to cool the turbine section is subsequently introduced into the combustors, thereby recuperating the heat absorbed by the steam during cooling. The steam is generated in a heat recovery steam generator and then directed to a manifold within the turbine shell. From the manifold, the steam flows through passages formed within the interior of the vane by a baffle, thereby cooling the vane and heating the steam. The steam is then discharged from the vane into a chamber that collects the compressed air from the compressor. In the chamber, the heated steam mixes with the compressed air and the air/steam mixture then flows into the combustors, where it serves to reduce NOx generation from the combustors and increase power output from the turbine.
摘要:
A combined cycle gas turbine power plant uses compressed air bleed from the gas turbine compressor discharge air as a source of warming air for the steam turbine at start-up by incorporating a bypass line from the compressor discharge to the steam chest. During this time period, the steam produced by the heat recovery steam generator is dumped to the condenser. After warming the steam turbine, the compressed air is directed to the heat recovery steam generator for discharge to atmosphere. Once the heat recovery steam generator is capable of generating steam at sufficient temperature and pressure for introduction into the steam turbine, a control valve in the bypass line is closed, thereby eliminating the warming air, and a control valve in the steam supply line from the heat recovery steam generator to the steam turbine is opened so that the steam turbine can be brought on line.
摘要:
A system (10) and a method for converting carbonaceous fuel (102) into a gaseous product (42). According to one embodiment a fuel slurry (118) is introduced into a chamber (120) and heated under sufficient pressure to prevent the carrier component (100) from boiling so that the carbonaceous component (102) does not separate from the carrier component (100). The step of heating the carrier component (100) may include increasing pressure and temperature to place the carrier component (100) in a supercritical state while sustaining the carbonaceous component (102) and carrier component (100) in a mixed state. In this embodiment a pump (136) imposes sufficient chamber pressure to prevent boiling of the carrier component (100) as the mixture is heated to at least 345° C., and a gasifier chamber (120) is positioned to receive the gaseous mixture (118) at a lower pressure than the supercritical pressure for creation of syngas (42).
摘要:
A method and system for augmenting the output of a combined cycle power plant having a gas turbine driving a generator, a heat recovery steam generator that recovers exhaust heat from the gas turbine to drive a steam turbine also driving a generator, and a refrigeration element that is powered by available energy in steam exhausted from the steam turbine to cool water. The refrigeration element employs a substantially closed cycle refrigeration system that is either an absorption chilling system or a thermal compression chilling system. The refrigeration element provides cool water to an inlet chiller arranged to chill inlet to the gas turbine to augment the power output of the gas turbine and the water is recirculated to be chilled and used again. Since the refrigeration cycle is substantially closed, little or no additional plant water consumption is imposed on the power plant.
摘要:
A system (10) and method of modifying a combined cycle power generation system (12, 14, 16, 18). In one embodiment of the invention an existing system includes one or more first gas turbines, one or more first steam turbines, and one or more heat recovery steam generators (HRSGs). An exemplary method includes providing at least one second gas turbine of greater operating efficiency than each of the one or more first gas turbines and connecting at least one existing HRSG to receive exhaust output from the second gas turbine to generate steam. Also according to the invention a path is provided for mixing steam exiting a high pressure steam turbine with steam generated in a low pressure HRSG to route such mixed steam through a reheat section of a high temperature, high pressure HRSG so that reheated mixed steam exiting the reheat section can be routed into a low pressure steam turbine.