Abstract:
A communication method and apparatus that uses modulation of post-conduction oscillation frequency in switching converters is provided. The apparatus may include a converter having a magnetic element having a primary winding and a secondary winding, a first switch, a control circuit configured to repeatedly activate the first switch to couple an input voltage source to the primary winding to store electrical energy in the magnetic element, and a diode coupled to the secondary winding, said diode configured to couple the secondary winding to a load to deliver the electrical energy stored in the magnetic element, and a communication apparatus having a second switch, a first modulator capacitor coupled to the secondary winding, a first transmitter configured to activate the second switch in accordance with a first input signal, and a first receiver configured to detect a post-conduction oscillation frequency of a voltage signal at the primary or secondary windings.
Abstract:
A self-biased non-isolated buck regulator is provided. The regulator may include a first input terminal and a second input terminal, a high-voltage switch coupled to the first input terminal, a low-voltage switch coupled to the high-voltage switch, an inductor having a first terminal coupled to the high-voltage switch and the first low-voltage switch, a high-voltage rectifier diode coupled between the first low-voltage switch and the second input terminal, a second low-voltage switch coupled to the first low-voltage switch and the high-voltage rectifier diode, and a capacitor having a first terminal coupled to the first terminal of the inductor, and a second terminal coupled to the second low-voltage switch.
Abstract:
A multiple-phase parallelable constant on time (COT) buck controller, a first phase containing a first memory bit and a second phase containing a second memory bit. The COT buck controller includes a first converter comprising a first constant TON generator configured to sense and deliver a first TON request when the first memory bit is in a logic one state, and a second converter connected in parallel with the first converter, the second converter comprising a second constant TON generator configured to sense and deliver a second TON request when the second memory bit is in the logic one state, only one of the first memory bit and the second memory bit being in the logic one state thus generating activity in a daisy chain ring where each of the first converter and the second converter senses and delivers a corresponding TON request in a sequential manner.
Abstract:
A cascaded buck converter for receiving input voltage from an input voltage source and for delivering output voltage to a load. The converter includes a first inductor, a second inductor, a coupled inductor having a first winding connected in series with the first inductor and a second winding connected in series with the second inductor, an intermediate decoupling capacitor for receiving energy from the first inductor and the first winding and for supplying energy to the second inductor and the second winding, and an output decoupling capacitor for smoothening the output voltage at the load.
Abstract:
A zero-voltage switching buck converter circuit and control circuit are provided. The buck converter circuit may include a first inductor, a smoothing capacitor coupled to the first inductor, a rectifier diode coupled in parallel with the first inductor and the smoothing capacitor, a control switch coupled to the first inductor, a control circuit configured to turn the control switch off and on repeatedly at a high frequency rate; and a snubber network coupled to the first inductor and the control circuit. The snubber network may include second and third inductors connected in series, wherein one terminal of the first inductor is connected to a node connecting the second and third inductors, and an auxiliary switch connected to the control circuit. A first terminal of the second inductor that is not connected to the node may be coupled to the control switch, and a first terminal of the third inductor that is not connected to the node may be coupled to the auxiliary switch.