摘要:
This disclosure is directed to an isoelectric focusing apparatus, wherein stabilization of the fluid containing the isolated proteins is achieved by carrying out the separation in a rotating cylinder with the separation cavity of the cylinder being segmented by means of filter elements. The filter elements are constituted of a material offering some degree of resistance to fluid convection, but allowing relatively free and unhindered passage of current and transport of proteins. The combined effect of segmentation and rotation has been found to be superior to either segmentation or rotation alone in maintaining the stability of the migrated fractions.
摘要:
The present invention relates to the reduction of the fibrinogen concentration in cryoprecipitate fraction formed during the fractionation of blood. This zinc-mediated decrease of fibrinogen increases the ratio of Factor VIII to total protein content.
摘要:
The disclosure is directed to an apparatus for isoelectric focusing. A fluid is employed which contains buffering compounds capable of establishing a pH gradient in an electric field. A plurality of ion non-selective permeable membranes are used to streamline the flow of fluid while allowing interchange of fluid constituents therebetween. Electrodes establish an electrical potential transverse the flow of fluid to establish a gradient of pH steps as between successive channels defined by the membranes.
摘要:
The disclosure is directed to a method and apparatus for isoelectric focusing of fluids. In accordance with the disclosed method, the flow of fluids to be processed is established in a first direction. This flow of fluids is streamlined by providing a plurality of permeable microporous membranes which define generally parallel channels oriented in the first direction. An electrical potential is applied across the streamlined channels of flowing fluid, and isoelectric focusing is achieved on the fluids during the flow thereof since the membranes allow interchange of fluid constituents therebetween while providing the desired streamlining. An approximation of "plug" type flow is achieved within the streamlined channels; i.e., flow having an approximately uniform cross-sectional characteristic. In the preferred embodiment of the method of the invention, a recirculation path is established for each of the streamlined channels, such that the fluid flowing out of each channel is recirculated back to the beginning of the channel. Preferably, this is achieved by pumping the fluids in each of the recirculation paths, and also providing cooling for the fluids during the recirculation thereof. In this manner, a number of "passes" are effected to obtain the desired degree of isoelectric focusing. The cooling, which is performed during the recirculation, serves to minimize problems with dissipation of Joule heat during the isoelectric focusing of the fluids in the streamlined channels. Also, in the preferred embodiment of the invention, the first direction is downward such that the streamlined fluids flow under the influence of gravity to permit gravity equilibrium of fluid levels in the channels across the streamlining membranes.