Abstract:
The invention provides corn event MON 87411, and plants, plant cells, seeds, plant parts, and commodity products comprising event MON 87411. The invention also provides polynucleotides specific for event MON 87411 and plants, plant cells, seeds, plant parts, and commodity products comprising polynucleotides specific for event MON 87411. The invention also provides methods related to event MON 87411.
Abstract:
The invention provides corn event MON 87411, and plants, plant cells, seeds, plant parts, and commodity products comprising event MON 87411. The invention also provides polynucleotides specific for event MON 87411 and plants, plant cells, seeds, plant parts, and commodity products comprising polynucleotides specific for event MON 87411. The invention also provides methods related to event MON 87411.
Abstract:
The invention provides a transgenic Gossypium hirsutum event MON 88702, plants, plant cells, seeds, plant parts, progeny plants, and commodity products comprising event MON 88702. The invention also provides polynucleotides specific for event MON 88702, plants, plant cells, seeds, plant parts, progeny plants, and commodity products comprising polynucleotides for event MON 88702. The invention also provides methods related to event MON 88702.
Abstract:
The invention provides a transgenic Glycine max event MON87751, plants, plant cells, seeds, plant parts, progeny plants, and commodity products comprising event MON87751. The invention also provides polynucleotides specific for event MON87751, plants, plant cells, seeds, plant parts, and commodity products comprising polynucleotides for event MON87751. The invention also provides methods related to event MON87751.
Abstract:
The present invention provides a transgenic soybean comprising event MON87712 that exhibits increased yield. The invention also provides cells, plant parts, seeds, plants, commodity products related to the event, and DNA molecules that are unique to the event and were created by the insertion of transgenic DNA into the genome of a soybean plant. The invention further provides methods for detecting the presence of said soybean event nucleotide sequences in a sample, probes and primers for use in detecting nucleotide sequences that are diagnostic for the presence of said soybean event.
Abstract:
The present invention provides methods and compositions for the identification and selection of loci modulating phenotypic expression of a herbicide tolerance trait in plant breeding. In addition, methods are provided for screening germplasm entries for the performance and expression of this trait.
Abstract:
The present invention provides breeding methods and compositions to enhance the germplasm of a plant. The methods describe the identification and accumulation of transgenes and favorable haplotype genomic regions in the germplasm of a breeding population of crop plants.
Abstract:
The invention provides corn event MON 87411, and plants, plant cells, seeds, plant parts, and commodity products comprising event MON 87411. The invention also provides polynucleotides specific for event MON 87411 and plants, plant cells, seeds, plant parts, and commodity products comprising polynucleotides specific for event MON 87411. The invention also provides methods related to event MON 87411.
Abstract:
The invention provides a transgenic soybean event MON 87708 plant and plants, plant cells, seeds, plant parts, and commodity products derived from event MON 87708. The invention also provides polynucleotides specific for event MON 87708 and plants, plant cells, seeds, plant parts, and commodity products comprising polynucleotides specific for event MON 87708. The invention also provides methods related to event MON 87708.
Abstract:
The invention overcomes the deficiencies of the art by providing an agronomically elite soybean plant with non-transgenic mutations of at least two of the glycinin subunits selected from the group consisting of Gy1, Gy2, Gy3, Gy4, and Gy5, such as conferring a Gy2 and Gy4 null phenotype and increased β-conglycinin content in seed. The invention also provides derivatives, and plant parts of these plants and uses thereof. Methods for marker assisted selection of soybean varieties comprising non-transgenic mutations conferring a reduced Gy1, Gy2, Gy3, Gy4, and Gy5 phenotype are also provided as part of the current invention. Methods for producing such plants that are further lipoxygenase and/or Kunitz Trypsin Inhibitor null and the plants produced thereby are also provided. The invention is significant in that soybeans from such plants are preferred dietary additives and provide important health benefits.