Abstract:
This document provides methods and materials involved in assessing samples (e.g., cancer cells) for the presence of homologous recombination deficiency (HRD) or an HRD signature. For example, methods and materials for determining whether or not a cell (e.g., a cancer cell) contains an HRD signature are provided. Materials and methods for identifying cells (e.g., cancer cells) having a deficiency in homology directed repair (HDR) as well as materials and methods for identifying cancer patients likely to respond to a particular cancer treatment regimen also are provided.
Abstract:
This document provides methods and materials involved in assessing samples (e.g., cancer cells) for the presence of homologous recombination deficiency (HRD) or an HRD signature. For example, methods and materials for determining whether or not a cell (e.g., a cancer cell) contains an HRD signature are provided. Materials and methods for identifying cells (e.g., cancer cells) having a deficiency in homology directed repair (HDR) as well as materials and methods for identifying cancer patients likely to respond to a particular cancer treatment regimen also are provided.
Abstract:
Provided herein are methods for predicting chemotherapy benefit. The invention predicts chemotherapy benefit based on the expression analysis of biomarkers, e.g., RNA biomarker transcription analysis, taken from a tumor sample. The biomarker expression data can be combined with clinical variables, e.g., tumor size and nodal status, to generate a profile that predicts the benefit of including chemotherapy as a treatment decision.
Abstract:
Provided herein are methods for predicting chemotherapy benefit. The invention predicts chemotherapy benefit based on the expression analysis of biomarkers, e.g., RNA biomarker transcription analysis, taken from a tumor sample. The biomarker expression data can be combined with clinical variables, e.g., tumor size and nodal status, to generate a profile that predicts the benefit of including chemotherapy as a treatment decision.
Abstract:
The present disclosure relates to methods, kits, and systems for assessing the risk of a human subject for developing a cancer, including genetic risk assessment, clinical risk assessment, and combinations of both to improve risk analysis.
Abstract:
Biomarkers and methods using the biomarkers for classifying cancer in a patient (e.g., predicting the risk of cancer-specific death or cancer recurrence) are provided.