Abstract:
Methods and apparatus are provided for discharging a Li—S battery having at least one battery unit comprising a lithium-containing anode and a sulfur-containing cathode with an electrolyte layer there between. One method comprises electrochemically surface treating the sulfur-containing cathode during discharge of the battery. A method of electrochemically surface treating a cathode of a lithium-sulfide battery comprises applying at least one oxidative voltage pulse during a pulse application period while the lithium-sulfur battery discharges and controlling pulse characteristics during the pulse application period, the pulse characteristics configured to affect a morphology of lithium sulfide forming on the sulfur-containing cathode during discharge.
Abstract:
An active material layer for an electrode of a lithium ion battery has a first active material comprising silicon-based particles, a second active material comprising graphite and conduits between the first active material and the second active material, the conduits being a conductive material and providing area for expansion of the first active material due to lithiation while maintaining contact between the first active material and the second active material.
Abstract:
A battery has a three dimensional electrode including a current collector, electron directing members, each electron directing member having a perimeter edge attached to a surface of the current collector with a polymer binder, the electron directing members extending from the surface of the current collector and configured to direct electron flow along a layered direction of the electrode, an active material layer on the current collector and a separator. The electron directing members extend into the active material layer and having a free end in spaced relation to the separator.
Abstract:
Electrodes having three dimensional current collectors provide stability to the electrode structure, improved contact between active material and the current collector, and improved charge transfer. An electrode includes a three dimensional current collector including a substantially planar base and spring-like structures extending from the substantially planar base in spaced relation along the substantially planar base. Each spring-like structure has an attachment end attached to the substantially planar base and a free distal end. Active material is layered on the three dimensional current collector, the active material filled between the spring-like structures. The active material comprises alloying particles having a high specific capacity, wherein the spring-like structures deflect as the alloying particles expand in volume due to lithiation and return to an initial position as the alloying particles contract due to delithiation.
Abstract:
Methods and apparatus are provided for discharging a Li—S battery having at least one battery unit comprising a lithium-containing anode and a sulfur-containing cathode with an electrolyte layer there between. One method comprises electrochemically surface treating the sulfur-containing cathode during discharge of the battery. A method of electrochemically surface treating a cathode of a lithium-sulfide battery comprises applying at least one oxidative voltage pulse during a pulse application period while the lithium-sulfur battery discharges and controlling pulse characteristics during the pulse application period, the pulse characteristics configured to affect a morphology of lithium sulfide forming on the sulfur-containing cathode during discharge.
Abstract:
Provided are methods and apparatus for charging a lithium sulfur (Li—S) battery. The Li—S battery has at least one unit cell comprising a lithium-containing anode and a sulfur-containing cathode with an electrolyte layer there between. One method provides controlled application of voltage pulses at the beginning of the charging process. An application period is initiated after a discharge cycle of the Li—S battery is complete. During the application period, voltage pulses are provided to the Li—S battery. The voltage pulses are less than a constant current charging voltage. Constant current charging is initiated after the application period has elapsed.