Abstract:
A method includes receiving a two-bit information stream comprising first and second bits and performing precoding using the two-bit information stream to determine multiple output signals. The precoding is performed to create a finite multiple of states for the output signals. The output signals comprise a first output signal based on a version of the first input bit and on a version of a second input bit, a second output signal based on a delayed version of the first input bit and the version of the second input bit, and a third output signal based on the version of first input bit and a delayed version of the second input bit. The method includes performing pulse shaping of each of the output signals to create pulse-shaped signals, combining the pulse-shaped signals to create a transmission waveform, and outputting the transmission waveform. Apparatus, computer programs, and computer program products are disclosed.
Abstract:
A method and apparatus may include receiving, by a machine type communication user equipment, parameters for frequency hopping in downlink or uplink. The parameters comprise an “X,” ‘Y,” and “Z” parameters, “X” corresponds to a duration for which the same physical resource blocks are used for transmission. ‘Y” corresponds to a frequency hopping period, and “Z” corresponds to a frequency hopping pattern indication. The method may also include performing frequency hopping in accordance with the parameters.
Abstract:
Various communication systems may benefit from rerouting considerations. For example, fifth generation (5G) systems dealing with radio link failure detection and data rerouting, particularly mmWave 5G systems, may benefit from rapid rerouting methods and systems. A method can include transmitting, from an access point, a downlink control message to a user equipment. The method can also include attempting to detect a Fast-ACK transmission signal from the user equipment in response to the transmitted downlink control message. The method can further include transmitting a rerouting request for the user equipment when the Fast-ACK transmission signal is not detected.
Abstract:
Systems, methods, apparatuses, and computer program products for random access channel (RACH) with a grid of beams for communication systems are provided. One method includes transmitting, by a base station, a beacon signal in one time slot with multiple switched beams, wherein the beams cover an intended coverage area with a grid-of-beams in both horizontal and vertical directions. The method may also comprise switching receiving beams in the grid-of-beams at a network reserved random access channel (RACH) slot by following an identical or directly related beam switching pattern in a downlink (DL) beacon channel. Another method includes detecting, by a user equipment, a beam ID in the downlink beacon channel, selecting the RACH slot using the detected beam ID, and transmitting, by the user equipment, a random access channel (RACH) signature in one or multiple beam blocks within a random access channel (RACH) slot.
Abstract:
A method and apparatus can be configured to operate a node in a first mode to support one or more user equipment. The method can also include operating the node in a second mode to support one or more user equipment. The coverage of the second mode is enhanced compared to the coverage of the first mode. The method can also include broadcasting information about when the second mode is available.
Abstract:
Various communication systems may benefit from efficient communication of system information. For example, certain wireless communication systems may benefit from system information block enhancement for low complexity user equipment and/or user equipment in coverage enhancement mode. A method can include decoding a transport block size (TBS) index in a compact downlink control information. The method can also include monitoring for SIB based on the decoded TBS index. The method may optionally include monitoring for the SIB based on a predefined transmission pattern of physical downlink control channel for machine type communication. The method may also optionally include decoding of M-SI messages from a subframe according to a pattern indicated by an information element in M-SIB1.
Abstract:
An example technique may include: receiving, by a mobile station from a base station, a plurality of copies of a broadcast information including a broadcast control message, wherein a copy of the broadcast information is transmitted via each of a plurality of basis function beams; determining, by the mobile station, a gain and phase value for each copy of at least a subset of the plurality of the received copies of the broadcast control message transmitted via different basis function beams. The technique may also include, for example, determining, by the mobile station, a combined broadcast control message based on at least the subset of the plurality of the received copies of the broadcast control message and the gain and phase value for each copy of at least the subset of the plurality of the received copies of the broadcast control message.
Abstract:
Systems, methods, apparatuses, and computer program products for power state transition handling for energy harvesting aware user equipment are provided. For example, a method can include monitoring an energy level and power state of a user equipment. The method can also include determining whether the energy level satisfies a power state transition criterion. The method can further include transitioning from a first power state to a second power state based on the power state transition criterion being determined to be satisfied by the energy level of the user equipment.
Abstract:
Method including: receiving, on a feeder link, a signal including feeder link slots having a feeder link bandwidth; mapping each of the feeder link slots onto a respective slot-subband in a respective service link slot according to a rule; transmitting, on plural service links, service signals, wherein each of the service signals includes service link slots each including m of the slot-subbands having a same bandwidth; the m slot-subbands do not overlap, are continuous with each other, and cover an entire service link bandwidth of the respective service link slot; wherein the feeder link slots have a feeder link slot duration; the service link slots have a service link slot duration longer than the feeder link slot duration; each of the feeder link slots including respective symbols; each of the slot-subbands includes the symbols of the feeder link slot mapped onto the respective slot-subband.
Abstract:
Systems, methods, apparatuses, and computer program products for paging of low complexity UE and/or UE in coverage enhancement mode are provided. One method includes producing a machine type communication (MTC) physical downlink control channel (M-PDCCH) configuration by configuring separate M-PDCCH subsets for paging. One of the subsets may be for low complexity user equipment, and another one of the subsets may be for user equipment operating in coverage enhancement mode.