Abstract:
Technology is disclosed for bridging clouds of computing devices for compute and data storage. The technology can receive a virtual routing table (VRT), wherein the VRT indicates an association with a virtual local area network (VLAN) and defines neighbors for each route wherein at least one neighbor is defined for each of the two different cloud service providers, wherein the route definition creates a private transitive network between the neighbors; receive from a first node a first message destined for a second node; determine that the first message employs the route specified by the VRT; forward the first message to the second node; receive from a third node a second message destined for the second node; determine that the second message does not employ the route specified by the VRT; and fail to forward the second message to the second node.
Abstract:
Technology is disclosed for bridging clouds of computing devices for compute and data storage. The technology can receive a virtual routing table (VRT), wherein the VRT indicates an association with a virtual local area network (VLAN) and defines neighbors for each route wherein at least one neighbor is defined for each of the two different cloud service providers, wherein the route definition creates a private transitive network between the neighbors; receive from a first node a first message destined for a second node; determine that the first message employs the route specified by the VRT; forward the first message to the second node; receive from a third node a second message destined for the second node; determine that the second message does not employ the route specified by the VRT; and fail to forward the second message to the second node.
Abstract:
A backup tool can manage multi-level backup into a cloud and restoration from the cloud. The backup tool can request a data source to stream backup data to the backup tool, and the backup tool can then generate data objects from the data stream for storing into the cloud. The backup tool generates the data objects in accordance with serialization of the data stream. The order of the data objects resulting from the data stream serialization is encoded into the names of the data objects. In addition, the backup tool encodes the backup level into the object names. With sequencing and backup level encoded into the data object names, the data objects can be stored in the cloud for later restoration.
Abstract:
Techniques for reclaiming storage space are disclosed herein. According to one embodiment, a storage space reclamation method includes a storage host creating at least one temporary logical container of data in a storage volume managed by a file system of a host so that a predetermined portion of storage capacity of the storage volume is occupied. Access to the storage volume is provided by a network storage controller to the storage host. The storage host translates a host address range for the file system of each temporary logical container of data into a storage controller address range for the network storage controller. The storage host requests the network storage controller to deallocate blocks the locations of which are indicated by the storage controller address range, and then deletes the at least one temporary logical container of data.
Abstract:
Technology is disclosed for bridging clouds of computing devices for compute and data storage. The technology can receive a virtual routing table (VRT), wherein the VRT indicates an association with a virtual local area network (VLAN) and defines neighbors for each route wherein at least one neighbor is defined for each of the two different cloud service providers, wherein the route definition creates a private transitive network between the neighbors; receive from a first node a first message destined for a second node; determine that the first message employs the route specified by the VRT; forward the first message to the second node; receive from a third node a second message destined for the second node; determine that the second message does not employ the route specified by the VRT; and fail to forward the second message to the second node.
Abstract:
Technology is disclosed for bridging clouds of computing devices for compute and data storage. The technology can receive a virtual routing table (VRT), wherein the VRT indicates an association with a virtual local area network (VLAN) and defines neighbors for each route wherein at least one neighbor is defined for each of the two different cloud service providers, wherein the route definition creates a private transitive network between the neighbors; receive from a first node a first message destined for a second node; determine that the first message employs the route specified by the VRT; forward the first message to the second node; receive from a third node a second message destined for the second node; determine that the second message does not employ the route specified by the VRT; and fail to forward the second message to the second node.
Abstract:
Technology is disclosed for bridging clouds of computing devices for compute and data storage. The technology can receive a virtual routing table (VRT), wherein the VRT indicates an association with a virtual local area network (VLAN) and defines neighbors for each route wherein at least one neighbor is defined for each of the two different cloud service providers, wherein the route definition creates a private transitive network between the neighbors; receive from a first node a first message destined for a second node; determine that the first message employs the route specified by the VRT; forward the first message to the second node; receive from a third node a second message destined for the second node; determine that the second message does not employ the route specified by the VRT; and fail to forward the second message to the second node.
Abstract:
A plurality of data objects is generated from a data stream received for constructing a backup image. A stream size of the data stream is determined. For each multi-threaded put operation used to write a data object of the plurality of data objects to a cloud storage, a maximum number of threads is determined into which the data object can be separated into a number of parts for simultaneous transmission to the cloud storage. A part size of each part is determined. A number of multi-threaded put operations is determined for writing the plurality of data objects to the cloud storage based, at least in part, on the stream size, the maximum number of threads into which the data object can be separated, and the part size. The plurality of data objects is stored into the cloud storage using the number of multi-threaded put operations.
Abstract:
A backup tool can manage multi-level backup into a cloud and restoration from the cloud. The backup tool can request a data source to stream backup data to the backup tool, and the backup tool can then generate data objects from the data stream for storing into the cloud. The backup tool generates the data objects in accordance with serialization of the data stream. The order of the data objects resulting from the data stream serialization is encoded into the names of the data objects. In addition, the backup tool encodes the backup level into the object names. With sequencing and backup level encoded into the data object names, the data objects can be stored in the cloud for later restoration.
Abstract:
A project is created in an Integrated Development Environment (IDE) having storage management, wherein the project is associated with at least one developer to develop code artifacts in the project. Allocation, using the storage management of the IDE, is requested of storage for data created in the project during the development of the code artifacts by a plurality of tools of the IDE. Tracking data is maintained within the IDE that tracks a plurality of storage related requests by the plurality of tools of the IDE.