Abstract:
An efficient implementation of DSP functions in a field programmable gate array (FPGA) using one or more computational blocks, each block having of a multiplier, an accumulator, and multiplexers. The structure implements most common DSP equations in a fast and a highly compact manner. A novel method for cascading these blocks with the help of dedicated DSP lines is provided, which leads to a very simple and proficient implementation of n-stage MAC operations.
Abstract:
An improved FPGA having a direct interconnect structure to provide selective data routing without stressing the general-purpose routing resources and to enable high rate of data exchange within the FPGA. At least two IP cores are connected to each other through the direct interconnect structure to enable simultaneous data interaction among the ports of the IP cores and to provide configurable bus width routing between the IP cores, and a plurality of logic blocks connected to the IP cores through the direct interconnect structure to enable simultaneous data routing among the IP cores and the plurality of logic blocks.
Abstract:
An improved interconnect structure in programmable devices gives a new dimension to the routing architecture, where architecture is divided into various domains. It includes at least one set of input lines, each set having predetermined number of input lines; an equal number of sets of routing lines, each set of routing lines being connected to a corresponding set of input lines using a switch box; thereby forming domain based routing structures, each domain being disjoint with the other domain. Segregating FPGA routing resources into various independent routing domains is done; each domain providing connectivity to route a signal to a set of sinks.
Abstract:
A FPGA comprising, a direct interconnect structure for providing selective data routing without stressing the general-purpose routing resources and enabling high rate of data exchange within the FPGA. At least two IP cores are connected to each other through said direct interconnect structure for enabling simultaneous data interaction among the ports of said IP cores and for providing configurable bus width routing between said IP cores, and a plurality of logic blocks connected to said IP cores through said direct interconnect structure for enabling simultaneous data routing among said IP cores and said plurality of logic blocks.
Abstract:
An improved interconnect structure in programmable devices gives a new dimension to the routing architecture, where architecture is divided into various domains. It includes at least one set of input lines, each said set having predetermined number of input lines; an equal number of sets of routing lines, each said set of routing lines being connected to a corresponding set of input lines using a switch box; thereby forming domain based routing structures, each domain being disjoint with the other domain. Segregating FPGA routing resources into various independent routing domains is done; each domain providing connectivity to route a signal to a set of sinks.