Abstract:
A phase compensation method for multi-scan in touch sensing system is provided. The phase compensation method includes the following steps. A plurality of carrier signals are received, and a demodulating operation is preformed on each of the carrier signals to obtain a first component signal and a second component signal of each of the carrier signals. An inverse matrix operation is respectively preformed on the first component signal and the second component signal both demodulated by the demodulating operation. A signal mixing operation is preformed on the first component signal and the second component signal both processed by the inverse matrix operation to obtain raw data of each of the carrier signals. Furthermore, a phase compensation circuit applying afore-said phase compensation method is also provided.
Abstract:
A capacitance sensing method is provided. The capacitance sensing method includes the following steps. During at least one first period of a sensing period, a capacitance under test is sensed through a first sensing channel, and a reference capacitance is sensed through a second sensing channel. During at least one second period of the sensing period, the reference capacitance is sensed through the first sensing channel, and the capacitance under test is sensed through the second sensing channel. A first difference is generated according to the capacitance under test and the reference capacitance.
Abstract:
A driving apparatus and an operation method thereof are provided. The driving apparatus includes a first driving circuit and a second driving circuit. The first driving circuit suspends performing at least one of a display driving operation and a touch sensing operation during a skip period under a driving mode, and the first driving circuit performs the at least one of the display driving operation and the touch sensing operation outside the skip period under the driving mode. The second driving circuit is coupled to the first driving circuit. The second driving circuit performs a fingerprint sensing operation during the skip period.
Abstract:
A control method for an optical fingerprint sensor and a touch controller are provided for canceling or reducing capacitive loading. The optical fingerprint sensor includes a plurality of pixels, and each of the pixels has a first control signal line and a second control signal line. Each of the pixels is further coupled to a first voltage source line, a second voltage source line and a sensing line. The control method includes the step of applying an anti-loading driving (ALD) signal on at least one of the first control signal line, the second control signal line, the first voltage source line, the second voltage source line and the sensing line when the touch controller is in a touch operation period.
Abstract:
The present invention provides a control method for an optical fingerprint sensor. The optical fingerprint sensor includes a plurality of pixels, and each of the pixels has a first control signal line and a second control signal line. Each of the pixels is further coupled to a first voltage source line, a second voltage source line and a sensing line. The control method includes a plurality of steps, and the steps are applying a first anti-loading driving (ALD) signal on the second control signal line, and applying a second ALD signal on at least one of the first control signal line, the first voltage source line, the second voltage source line and the sensing line.
Abstract:
A fingerprint and touch sensor includes a touch receiver, a fingerprint receiver, a mixer and a signal processing circuit. The touch receiver is configured to receive a touch sensing signal. The fingerprint receiver is configured to receive a fingerprint sensing signal having a first frequency. The mixer, coupled to the fingerprint receiver, is configured to move the fingerprint sensing signal in the first frequency to a second frequency. The signal processing circuit, coupled to the touch receiver and the mixer, is configured to process the fingerprint sensing signal in the second frequency and the touch sensing signal.
Abstract:
A signal processing circuit is provided. The signal processing circuit includes an analog-front-end circuit and a filter circuit. The analog-front-end circuit is configured to receive a sensing signal from a touch panel and perform a signal capture operation on the sensing signal to output a current signal. The filter circuit is coupled to the analog-front-end circuit. The filter circuit is configured to receive the current signal from the analog-front-end circuit and perform a signal filter operation on the current signal to output a first voltage signal. The filter circuit includes an anti-aliasing filter and a comb filter coupled in series.
Abstract:
A phase compensation method for multi-scan in touch sensing system is provided. The phase compensation method includes the following steps. A plurality of carrier signals are received, and a demodulating operation is preformed on each of the carrier signals to obtain a first component signal and a second component signal of each of the carrier signals. An inverse matrix operation is respectively preformed on the first component signal and the second component signal both demodulated by the demodulating operation. A signal mixing operation is preformed on the first component signal and the second component signal both processed by the inverse matrix operation to obtain raw data of each of the carrier signals. Furthermore, a phase compensation circuit applying afore-said phase compensation method is also provided.
Abstract:
An in-cell touch control panel includes a liquid crystal layer; a top glass; a bottom glass; a plurality of driving electrodes, formed between the top glass and the liquid crystal layer; and a plurality of sensing electrodes, formed between the bottom glass and the liquid crystal layer, and perpendicular to the plurality of driving electrodes. The plurality of driving electrodes and the plurality of sensing electrodes are utilized for sensing a touch point on the in-cell touch control panel.
Abstract:
A signal processing circuit includes a driving signal generator and an encoder. The driving signal generator is configured to generate a driving signal. The encoder includes a multiplexer, a plurality of driver/receiver circuits and a summation circuit. The multiplexer is configured to receive multiple sensing signals in response to the driving signal. Among the driver/receiver circuits, a first driver/receiver circuit is configured to receive at least one first sensing signal, and apply a first gain to the first sensing signal to generate a first encoded signal; and a second driver/receiver circuit is configured to receive at least one second sensing signal other than the first sensing signal, and apply a second gain different from the first gain to the second sensing signal to generate a second encoded signal. The summation circuit is configured to sum up the first encoded signal and the second encoded signal to generate an encoded data.