Abstract:
A fluorescence observation apparatus, including: a light source configured to irradiate a subject with reference light and excitation light; and one or more processors including hardware, wherein the one or more processers are configured to implement: a fluorescence-image generating portion configured to generate a fluorescence image; a reference-image generating portion configured to generate a color reference image; an extraction portion configured to extract a fluorescence region from the fluorescence image; a motion-effect generating portion configured to generate a frame image bringing about an effect that is visually time-varying with a variation quantity depending on a gradation value of the fluorescence region, in a region corresponding to the fluorescence region; and a synthesis portion configured to add the frame image to any of a plurality of color-component images constituting the reference image to synthesize a synthetic image.
Abstract:
Provided is an image processing device including an illuminating portion that irradiates a subject with illumination light and excitation light; a fluorescence image-acquisition portion that acquires a fluorescence image by capturing fluorescence generated at the subject; a return-light image-acquisition portion that acquires a return-light image by capturing return light returning from the subject; a color-image generating portion that generates a plurality of color images by adding different types of color information that constitute a color space to the acquired fluorescence image and return-light image; and an image combining portion that combines the plurality of color images that have been generated, wherein at least one of the fluorescence image and the return-light image is subjected to, by the color-image generating portion), correction processing in which exponents for distance characteristics, which are approximated to exponential functions, for the fluorescence image and the return-light image are matched with each other.
Abstract:
A fluorescence imaging apparatus including: a processor comprising hardware, configured to: specify a processing condition to be used to process a fluorescence image in accordance with treatment-details information indicating specifics of a treatment to be performed on a biological tissue; in a case where a first processing condition is specified, identify a first fluorescence region in the fluorescence image having a predetermined first fluorescence intensity based on the first processing condition; in a case where a second processing condition is specified, identify a second fluorescence region in the fluorescence image having a predetermined second fluorescence intensity based on the second processing condition; and generate a superimposed image by superimposing the first fluorescence region or the second fluorescence region that is identified, with a return-light image at a region in the return-light image corresponding to the first fluorescence region or the second fluorescence region, respectively, that is identified.
Abstract:
The invention provides a fluoroscopy apparatus including an image-capturing device that acquires a fluorescence image of a subject; a sensitivity adjusting portion that sets a sensitivity of the image-capturing device to fluorescence on the basis of a gradation value of the fluorescence image; a notifying portion that extracts a lesion part from the fluorescence image acquired by the image-capturing device with the sensitivity set by the sensitivity adjusting portion and presents it to an operator; and a display switching portion that displays the fluorescence image on a display unit when the sensitivity in the image-capturing device is equal to or less than a predetermined threshold and that presents information showing the existence of the lesion part on the notifying portion when the sensitivity is greater than the predetermined threshold.
Abstract:
Provided is a fluorescence observation device including: a processor configured to: extract, as a candidate region of interest, a region in a corrected fluorescence image that has a gradation value larger than a gradation-value threshold, the gradation-value threshold being set based on an average of gradiation values, a standard deviation, a first coefficient, and a second coefficient; receive a result, inputted by an observer, as to whether a candidate region of interest displayed on a display is a result of right indicating a determination by the observer that the candidate region of interest is a region of interest or a result of wrong indicating a determination by the observer that the candidate region of interest is not a region of interest; and set at least one of the first coefficient and the second coefficient so as to reflect the result inputted by the observer.
Abstract:
Provided is a fluoroscopy apparatus including a fluorescence-image generating portion that generates a fluorescence image; an identifying portion that identifies a position of a high-luminance region in the fluorescence image; a storage portion that stores the position of the high-luminance region; a detecting portion that detects an amount of change in a physical quantity, which can possibly act as a cause of changes in a property of the high-luminance region, starting from a time at which the position of the high-luminance region is identified by the identifying portion; a confidence-level calculating portion that calculates a confidence level of the property of the high-luminance region based on the detected amount of change; and a display-image generating portion that generates a display image in which the display mode at the position of the high-luminance region is set in accordance with the confidence level.
Abstract:
A fluoroscopy apparatus including: an illumination unit having a light source radiating illumination light and excitation light onto an observation target, a fluorescence-imaging unit acquiring a fluorescence image by imaging fluorescence generated at the observation target by the excitation light, a white-light-imaging unit acquiring a reference image by imaging light returning from the observation target by the illumination light, and an image-correction unit obtaining a correction fluorescence image by raising the luminance value of the fluorescence image to the power of a reciprocal of a first and second exponent obtained by a power approximation of a distance characteristic of luminance versus observation distance, for the fluorescence image, and that obtains a corrected fluorescence image by dividing the correction fluorescence image by the correction reference image.
Abstract:
A fluoroscopy apparatus including: an illumination unit having a light source radiating illumination light and excitation light onto an observation target, a fluorescence-imaging unit acquiring a fluorescence image by imaging fluorescence generated at the observation target by the excitation light, a white-light-imaging unit acquiring a reference image by imaging light returning from the observation target by the illumination light, and an image-correction unit obtaining a correction fluorescence image by raising the luminance value of the fluorescence image to the power of a reciprocal of a first and second exponent obtained by a power approximation of a distance characteristic of luminance versus observation distance, for the fluorescence image, and that obtains a corrected fluorescence image by dividing the correction fluorescence image by the correction reference image.
Abstract:
A fluoroscopy apparatus including: an illumination unit having a light source radiating illumination light and excitation light onto an observation target, a fluorescence-imaging unit acquiring a fluorescence image by imaging fluorescence generated at the observation target by the excitation light, a white-light-imaging unit acquiring a reference image by imaging light returning from the observation target by the illumination light, and an image-correction unit obtaining a correction fluorescence image by raising the luminance value of the fluorescence image to the power of a reciprocal of a first and second exponent obtained by a power approximation of a distance characteristic of luminance versus observation distance, for the fluorescence image, and that obtains a corrected fluorescence image by dividing the correction fluorescence image by the correction reference image.
Abstract:
Fluorescence generated at a lesion is distinguished from fluorescence generated at portions other than the lesion, and thus, observation is performed by using only the fluorescence generated at the lesion. Provided is a fluorescence observation apparatus including a light radiating portion that radiates excitation light onto an examination subject; a fluorescence-distribution acquiring portion that acquires an intensity distribution of fluorescence generated at the examination subject due to irradiation with the excitation light from the light radiating portion; and a non-target-region excluding portion that, in the fluorescence-intensity distribution acquired by the fluorescence-distribution acquiring portion, excludes regions in which a spectrum in a specific wavelength band has changed due to a specific biological component whose concentration in a lesion is lower than in other portions.