Abstract:
A separator for a lithium battery having (a) a porous polymeric layer, such as a polyethylene layer; and (b) a nanoporous inorganic particle/polymer layer on both sides of the polymeric layer, the nanoporous layer having an inorganic oxide and one or more polymers; the volume fraction of the polymers in the nanoporous layer is about 15% to about 50%, and the crystallite size of the inorganic oxide is 5 nm to 90 nm.
Abstract:
Provided is a lithium battery, wherein the battery comprises an anode, a cathode, wherein the cathode comprises one or more transition metals, an electrolyte, and a porous separator interposed between the cathode and anode, wherein the separator comprises an anionic compound. Also provided are methods of manufacturing such batteries.
Abstract:
A separator for a lithium battery having (a) a porous polymeric layer, such as a polyethylene layer; and (b) a nanoporous inorganic particle/polymer layer on both sides of the polymeric layer, the nanoporous layer having an inorganic oxide and one or more polymers; the volume fraction of the polymers in the nanoporous layer is about 15% to about 50%, and the crystallite size of the inorganic oxide is 5 nm to 90 nm.
Abstract:
Provided is a lithium battery, wherein the battery comprises an anode, a cathode, wherein the cathode comprises one or more transition metals, an electrolyte, and a porous separator interposed between the cathode and anode, wherein the separator comprises an anionic compound. Also provided are methods of manufacturing such batteries.
Abstract:
Provided is a lithium battery, wherein the battery comprises an anode, a cathode, wherein the cathode comprises one or more transition metals, an electrolyte, and a porous separator interposed between the cathode and anode, wherein the separator comprises an anionic compound. Also provided are methods of manufacturing such batteries.