Abstract:
A sequence allocating method and apparatus wherein in a system where a plurality of different Zadoff-Chu sequences or GCL sequences are allocated to a single cell, the arithmetic amount and circuit scale of a correlating circuit at a receiving end can be reduced. In ST201, a counter (a) and a number (p) of current sequence allocations are initialized, and in ST202, it is determined whether the number (p) of current sequence allocations is coincident with a number (K) of allocations to one cell. In ST203, it is determined whether the number (K) of allocations to the one cell is odd or even. If K is even, in ST204-ST206, sequence numbers (r=a and r=N−a), which are not currently allocated, are combined and then allocated. If K is odd, in ST207-ST212, for sequences that cannot be paired, one of sequence numbers (r=a and r=N−a), which are not currently allocated, is allocated.
Abstract:
Provided is a radio communication device which can prevent interference between SRS and PUCCH when the PUCCH transmission bandwidth fluctuates and suppress degradation of CQI estimation accuracy by the band where no SRS is transmitted. The device includes: an SRS code generation unit (201) which generates an SRS (Sounding Reference Signal) for measuring uplink line data channel quality; an SRS arrangement unit (202) which frequency-multiplexes the SRS on the SR transmission band and arranges it; and an SRS arrangement control unit (208) which controls SRS frequency multiplex so as to be uniform in frequency without modifying the bandwidth of one SRS multiplex unit in accordance with the fluctuation of the reference signal transmission bandwidth according to the SRS arrangement information transmitted from the base station and furthermore controls the transmission interval of the frequency-multiplexed SRS.
Abstract:
A radio transmission device and a radio communication method employ sequence length decision units which hold a correspondence in which one basic sequence length is set for a plurality of transmission bandwidths. The sequence length decision units acquire transmission bandwidth information and decide a sequence length corresponding to the acquired transmission bandwidth information. A decision is made as to which of the cyclic extension process or the truncation process is to be executed on a Zadoff-Chu sequence according to the sizes of the acquired transmission bandwidth information and the basic sequence length. Then, a difference between the transmission bandwidth and the basic sequence length, i.e., the number of possible cyclic extension/truncation symbols, is obtained.
Abstract:
A radio communication apparatus is provided, which includes a receiver and a controller. The receiver, in operation, receives a first power headroom (PHR), which is obtained by subtracting a transmit power for a data channel from a maximum transmit power at a mobile station and which is transmitted from the mobile station, and receives a second PHR, which is obtained by subtracting the transmit power for the data channel and a transmit power for a control channel from the maximum transmit power at the mobile station and which is transmitted from the mobile station. The controller, in operation, selectively sets a simultaneous transmission of the data channel and the control channel in different frequency bands to be performed by the mobile station. When the data channel and the control channel are simultaneously transmitted in different frequency bands from the mobile station, the second PHR is obtained and transmitted from the mobile station.
Abstract:
Provided is a transmission device with which, by orthogonalizing different transmission bandwidth DM-RSs, CoMP performance is improved, and it is possible to increase MU-MIMO communication multiplexing. In the device, a sequence generator unit (103) generates a reference signal of a number of transmission bandwidths which is less than a prescribed number using a first sequence which is used in a reference signal of a number of transmission bandwidths which is greater than or equal to the prescribed number when a coordinated receiving by a plurality of receiving devices is applied, and generates the reference signal of the number of transmission bandwidth which is less than the prescribed number using a second sequence which differs from the first sequence when the coordinated receiving is not applied. A transmission unit (112) transmits the reference signal.
Abstract:
A sequence allocating method and apparatus wherein in a system where a plurality of different Zadoff-Chu sequences or GCL sequences are allocated to a single cell, the arithmetic amount and circuit scale of a correlating circuit at a receiving end can be reduced. In ST201, a counter (a) and a number (p) of current sequence allocations are initialized, and in ST202, it is determined whether the number (p) of current sequence allocations is coincident with a number (K) of allocations to one cell. In ST203, it is determined whether the number (K) of allocations to the one cell is odd or even. If K is even, in ST204-ST206, sequence numbers (r=a and r=N−a), which are not currently allocated, are combined and then allocated. If K is odd, in ST207-ST212, for sequences that cannot be paired, one of sequence numbers (r=a and r=N−a), which are not currently allocated, is allocated.
Abstract:
A communication apparatus in the present disclosure comprises an AID generator, a Trigger frame generator, and a wireless transmitter/receiver. When a Trigger Type in a trigger frame is an RA trigger, the AID generator generates, as information for an AID12 subfield, information that is different from an AID. The Trigger frame generator generates a RA variant Trigger frame when the Trigger Type in the trigger frame is an RA trigger, and sets, in the AID12 subfield included in the RA variant Trigger frame, the information output from the AID generator. The wireless transmitter/receiver transmits the Trigger frame, generated by the Trigger frame generator, to a terminal.
Abstract:
A communication apparatus in the present disclosure comprises an AID generator, a Trigger frame generator, and a wireless transmitter/receiver. When a Trigger Type in a trigger frame is an RA trigger, the AID generator (103) generates, as information for an AID12 subfield, information that is different from an AID. The Trigger frame generator (104) generates a RA variant Trigger frame when the Trigger Type in the trigger frame is an RA trigger, and sets, in the AID12 subfield included in the RA variant Trigger frame, the information output from the AID generator (103). The wireless transmitter/receiver (106) transmits the Trigger frame, generated by the Trigger frame generator (104), to a terminal (200).
Abstract:
Provided are a radio transmission device and a radio transmission method capable of improving downlink and uplink throughput even when performing dynamic symbol allocation. In the device and the method, BS and MS share a table correlating a basic TF as a combination of parameters such as TB size used for transmitting only user data, an allocation RB quantity, a modulation method, and an encoding ratio, with a derived TF having user data of different TB size by combining L1/L2 control information. Even when multiplexing L1/L2 control information, Index corresponding to the basic TF is reported from BS to MS.
Abstract:
Provided are a radio transmission device and a radio transmission method capable of improving downlink and uplink throughput even when performing dynamic symbol allocation. In the device and the method, BS and MS share a table correlating a basic TF as a combination of parameters such as TB size used for transmitting only user data, an allocation RB quantity, a modulation method, and an encoding ratio, with a derived TF having user data of different TB size by combining L1/L2 control information. Even when multiplexing L1/L2 control information, Index corresponding to the basic TF is reported from BS to MS.