Abstract:
A smart device having ability for rejecting mistaken touching is illustrated, which comprises a capacitive button module which comprises a contacting layer, a first electrode layer, a second electrode layer and an elastic layer. A first electrode of the first electrode layer and a second electrode of the second electrode layer form a first inductive capacitor, and the second electrode and a third electrode of the second electrode layer form a second inductive capacitor. When the elastic layer receives a pressure and generates a deformation, a pressing signal is generated according to a capacitance variation of the first inductive capacitor. When a conductor is close to or in contact with the contacting layer, a moving signal is generated according to a capacitance variation of the second inductive capacitor.
Abstract:
A capacitive touchpad is provided, which includes a substrate module, a plurality of sensing electrodes, a plurality of driving electrodes and a plurality of light-emitting diode (LED) dies. The plurality of sensing electrodes and the plurality of driving electrodes form a touch sensing region of the capacitive touchpad, and the touch sensing region is divided into a plurality of sensing units having same areas. Each of the LED dies is arranged in two adjacent ones of the plurality of sensing units, and a position of each of the LED dies corresponds to one of the plurality of driving electrodes, and the LED dies are electrically isolated from the plurality of sensing electrodes and the plurality of driving electrodes.
Abstract:
There is provided a touch force sensor including a first drive electrode, a second drive electrode and a receiving electrode. The first drive electrode is used to form a first capacitance with the receiving electrode. The second drive electrode is used to form a second capacitance with the receiving electrode. The receiving electrode shields the first drive electrode such that when a conductor approaches the receiving electrode, only the second capacitance is changed but the first capacitance is not changed. The first capacitance is changed only when the conductor gives a force upon the receiving electrode.
Abstract:
A capacitive touchpad is provided, which includes a substrate module, a plurality of sensing electrodes, a plurality of driving electrodes and a plurality of light-emitting diode (LED) dies. The plurality of sensing electrodes and the plurality of driving electrodes form a touch sensing region of the capacitive touchpad, and the touch sensing region is divided into a plurality of sensing units having same areas. Each of the LED dies is arranged in two adjacent ones of the plurality of sensing units, and a position of each of the LED dies corresponds to one of the plurality of driving electrodes, and the LED dies are electrically isolated from the plurality of sensing electrodes and the plurality of driving electrodes.
Abstract:
A key unit and a keyboard using the same are provided. The key unit includes a circuit board, a supporting assembly, a keycap, and a floating conductive structure. The circuit board includes a capacitance sensing circuit embedded therein, and the capacitance sensing circuit includes a pair of sensor electrodes which are spaced apart from each other. The supporting assembly is disposed on the circuit board. The keycap is moveably disposed above and spaced apart from the circuit board. The supporting assembly disposed between the keycap and the circuit board allows the keycap to be moved between a non-depressed position and a depressed position with respect to the circuit board. The floating conductive structure is disposed on the supporting assembly, and an orthogonal projection of the floating conductive structure on the circuit board overlaps with the pair of sensor electrodes.
Abstract:
A lighting touchpad is provided, which includes a substrate module, a plurality of sensing electrodes, a plurality of driving electrodes, a plurality of light emitting diode (LED) chips mounted on the substrate module, and a controller. The driving electrodes and the sensing electrodes are formed on the substrate module and are respectively located at different height positions. The driving electrodes define a distribution space that extends along a normal direction of the substrate module. The LED dies are arranged in the distribution space. The controller is electrically coupled to the sensing electrodes, the driving electrodes, and the LED dies through the substrate module. When a coupling capacity is generated between a conductor and at least one of the sensing electrodes, the controller is configured to drive at least one of the LED dies adjacent to the at least one of the sensing electrodes to emit light.
Abstract:
An object positioning method for touch panel is disclosed. The method includes steps as follows: obtaining a motion estimation vector according to the operational analysis of a positioning coordinate and a sensing coordinate, and determining whether the length of the motion estimation vector is smaller than a predetermined distance or not, if the length of the motion estimation vector is smaller than the predetermined distance, outputting the positioning coordinate; on the contrary, if the length of the motion estimation vector is larger than the predetermined distance, updating the value of the positioning coordinate and outputting the positioning coordinate updated.
Abstract:
A mechanical key component and a mechanical keyboard are provided. The mechanical key component includes a circuit board, an elastic element and a key cap. The circuit board is provided with a first sensing electrode. The elastic element is disposed on the circuit board, and a movable portion of the elastic element is connected to a second sensing electrode. The key cap is movably disposed on the elastic element. The elastic element enables the key cap to move between an unpressed position and a pressed position, and the movable portion drives the second sensing electrode to move relative to the first sensing electrode. In response to the key cap being moved between the unpressed position and the pressed position, a coupling capacitance between the first sensing electrode and the second sensing electrode changes to indicate whether the key cap is in the unpressed position or the pressed position.
Abstract:
A lighting touchpad is provided. The lighting touchpad includes a substrate, a plurality of first electrodes, a plurality of second electrodes, a plurality of bonding pads and a plurality of lighting devices. The plurality of first electrodes, the plurality of second electrodes and the plurality of bonding pads are arranged on the substrate, and the first electrodes, the second electrodes, and the bonding pads are alternately arranged in a sensing area without overlapping with one another. The pluralities of lighting devices are connected to a part of the bonding pads. The sensing area includes a plurality of sensing cells, and the first electrodes, the second electrodes and the bonding pads are arranged according to a predetermined spatial characteristic for each of the sensing cells
Abstract:
An input method and a controller of a touch keyboard are provided. The input method includes: detecting a touch behavior performed on the touch keyboard, and identifying the touch behavior to determine whether to output mouse event data, keyboard event data or a combination of mouse event data and keyboard event data.