摘要:
For an integrated circuit having multiple metal layers, a computer-aided design (CAD) method for designing grounded fill in the integrated circuit includes: (a) finding the eligible fill areas for each metal layer; (b) storing the eligible fill area data for each metal layer in an overflow memory; (c) finding ground contact areas for each metal layer; (d) storing the ground contact area data for each metal layer in an overflow memory; (e) temporarily storing the eligible fill area data for a selected metal layer and the ground contact area data for the metal layers adjacent to the selected metal layer in active memory; (f) fitting a fill pattern to an eligible fill area in the selected metal layer, where the fill pattern is composed of at least one element; (g) checking the adjacent metal layers for a ground contact where the element of the fill pattern may be grounded; (h) locating a conductive via between the element of the fill pattern and a ground contact in an adjacent layer; and (i) repeating steps (e) through (h) for each metal layer.
摘要:
Various improvements in the fabrication of an antifuse having silicon-amorphous silicon-metal layer structure are presented. Included are improved deposition techniques for the amorphous silicon layer. The improvements include steps for the fabrication of such an antifuse without the use of platinum and the resulting antifuse and contact structures.
摘要:
Various improvements in the fabrication of an antifuse having silicon-amorphous silicon-metal layer structure are presented. Included are improved deposition techniques for the amorphous silicon layer. The improvements include steps for the fabrication of such an antifuse without the use of platinum and the resulting antifuse and contact structures.
摘要:
An antifuse structure particularly suitable for field programmable gate arrays is presented. In most present day processes the antifuse structure is formed with a refractory metal layer, amorphous silicon layer and refractory metal layer sandwiched between two metal interconnection lines. Unprogrammed resistances of very high values, programmed resistances of very low values, short programming times and desirable programming voltages are among the advantages realized.
摘要:
An antifuse in an integrated circuit which has first and second conducting lines, a semiconductor layer of amorphous silicon between the first and second conducting lines, and a barrier metal layer of TiN between the semiconductor layer and the first conducting layer is disclosed. The TiN layer is nonstoichiometric composition to enhance the probability of said antifuse having a desired resistance when said antifuse is programmed. More specifically, the TiN layer has a composition of Ti.sub.1.0 N.sub.0.5-0.8.
摘要:
An antifuse particularly suitable for submicron geometries is presented. The antifuse is formed between a silicon layer, which could be a doped region of the semiconductor substrate, an epitaxial layer or a polysilicon layer, and an upper metal interconnection layer. In contact holes in a silicon dioxide layer insulating the silicon and metal interconnection layers from each other, the antifuses have a thick refractory metal layer having a top surface approximately at the same level as the top surface of the insulating layer. Depending upon the process used to deposit the refractory metal layer, a thin adhesion layer may be located immediately below the refractory metal layer. Between the underlying silicon layer and upper interconnection layer, a thin semiconductor material layer of amorphous silicon may be located either below the refractory metal layer or above it. At its bottom, the interconnection layer also has a barrier layer to prevent any intermixing between the amorphous silicon layer and the metal interconnection layer.