摘要:
A web-browser plug-in is described herein that detects the type of content a user selects on a web page and allows the user to retrieve additional information about selected web content or initiate a communication application. The plug-in analyzes the user's selection to determine what type of web content was selected. A smart menu is created and presented to the user with options relating to the type of web content selected. The user can then either download additional information about the web content or initiate a communication application without having to navigate to another web page or request information from a web service. Without having to navigate to a second web page, the user can select an option and either view the additional web information or initiate the communication application.
摘要:
In one embodiment, a method includes calculating a first mean of check-in locations associated with a place; selecting a subset of the check-in locations based on distances between the first mean and the check-in locations; and determining a central location and at least a portion of a perimeter of the place based on the subset of the check-in locations.
摘要:
In one embodiment, a method includes calculating a first mean of check-in locations associated with a place; selecting a subset of the check-in locations based on distances between the first mean and the check-in locations; and determining a central location and at least a portion of a perimeter of the place based on the subset of the check-in locations.
摘要:
A social networking system leverages user's social information to evaluate content submitted for inclusion in objects. If the evaluated submission is accepted, the submission is added to the content of an object. Accepted submissions are also used to predict associations between metadata and objects. Metadata is used to predict which objects will match user searches for information. The social networking system also provides a user interface configured to prompt users to submit information to objects. When a user completes a submission to an object, the user is provided with other options for groups of objects to contribute to. The objects offered are chosen to increase the likelihood that the user will choose to provide submissions to one of the provided objects.
摘要:
A technique for increasing efficiency of inference of structure variables (e.g., an inference problem) using a priority-driven algorithm rather than conventional dynamic programming. The technique employs a probable approximate underestimate which can be used to compute a probable approximate solution to the inference problem when used as a priority function (“a probable approximate underestimate function”) for a more computationally complex classification function. The probable approximate underestimate function can have a functional form of a simpler, easier to decode model. The model can be learned from unlabeled data by solving a linear/quadratic optimization problem. The priority function can be computed quickly, and can result in solutions that are substantially optimal. Using the priority function, computation efficiency of a classification function (e.g., discriminative classifier) can be increased using a generalization of the A* algorithm.