Abstract:
Disclosed is an image sensor comprising: an image sensing unit array, for sensing an object and comprising a plurality of image sensing units arranged in a sensing matrix with M rows and N columns; an image data reading circuit, for reading and outputting image data caught by at least part of the image sensing units; and a control unit, for controlling numbers and locations of the image sensing units for each row or each column, from which the image data reading circuit reads the image data; for computing a read region that is in the image sensing unit array and corresponds to the object; and for controlling the image data reading circuit to read at least part of the image data of the column or the row. The part of the column or the row, which is read, comprises the read region.
Abstract:
A sensor device capable of adjusting at least one clock signal of the sensor device according to a communication between a host and an auxiliary device through a specific bus includes a first oscillator circuit and a processing circuit. The first oscillator circuit is configured for generating a first clock signal. The processing circuit is configured for calibrating a clock frequency of the first clock signal according to the communication between the host and the auxiliary device.
Abstract:
An optical touch sensitive apparatus includes a substrate, a plurality of image capturing lens modules, a light detecting unit, and an optical path switching unit. The substrate has an operation surface. Each of the image capturing lens modules has a light input end and a light output end. The light input end is located at the edge of the substrate for capturing optical information in an objective space above the operation surface. The light output end is for outputting the optical information. The optical path switching unit is located among the light output ends and the light detecting unit for transmitting the optical information outputted from at least one of the light output ends to the light detecting unit. In addition, an image capturing apparatus is provided.
Abstract:
A linear light source module includes a mirror light guide component and a light emitting component. The mirror light guide component has a light emitting end, a surface having a mirror light reflecting layer formed thereon and a light incidence end. The light emitting component is configured for providing light to the light incidence end. The mirror light guide component is a light guide bar and is configured for converting the light from the first light emitting component into a linear light when the light emitting component is lighted, and the mirror light guide component is a mirror bar and is configured for providing a mirror function when the light emitting component is closed. An optical touch device with the linear light source module can avoid a blind zone and can be used as a dual-touch device or a multi-touch device.
Abstract:
The present invention provides an image data sensing system comprising a controller and at least one image sensor connected in series. The controller comprises a control input port and a control output port. The controller transmits a command signal or a synchronizing signal to all image sensors via the control output port, and the image sensor transmits image data to the controller via the control input port. By this way, the number for the ports of the controller can be decreased. The present invention further provides a mechanism that the image sensor can operate at different timings if a number of the image sensor is more than one. The present invention also provides relative image sensing methods.
Abstract:
Disclosed is an image sensor comprising: an image sensing unit array, for sensing an object and comprising a plurality of image sensing units arranged in a sensing matrix with M rows and N columns; an image data reading circuit, for reading and outputting image data caught by at least part of the image sensing units; and a control unit, for controlling numbers and locations of the image sensing units for each row or each column, from which the image data reading circuit reads the image data; for computing a read region that is in the image sensing unit array and corresponds to the object; and for controlling the image data reading circuit to read at least part of the image data of the column or the row. The part of the column or the row, which is read, comprises the read region.
Abstract:
A method of calculating a coordinate of a touch medium is disclosed in the present invention. The method includes obtaining a first image to determine whether the first image overlaps a first threshold, generating a first interceptive boundary when the first image overlaps the first threshold, obtaining a second image to generate a second interceptive boundary by overlap of the second image and a second threshold, determining whether the first interceptive boundary overlaps the second interceptive boundary, and confirming a status of the touch medium according to determination.
Abstract:
An optical detecting device capable of increasing signal-to-noise ratio (SNR) and economizing power consumption is installed on a wearable device. The optical detecting device includes a base, an optical detecting component and a light emitting module. The optical detecting component is disposed on the base and has a detecting surface normal vector. The light emitting module is disposed on the base and outputs a sampling signal to project onto an external object, and the optical detecting component can receive the sampling signal reflected from the external object. The light emitting module is slanted toward the optical detecting component, and an optical axis of spatial distribution of the sampling signal and the detecting surface normal vector are crossed to form a deviated angle.
Abstract:
Disclosed is an image sensor comprising: an image sensing unit array, for sensing an object and comprising a plurality of image sensing units arranged in a sensing matrix with M rows and N columns; an image data reading circuit, for reading and outputting image data caught by at least part of the image sensing units; and a control unit for controlling the image data reading circuit to read image data for a reading region in the sensing matrix. The image sensor further comprises a buffer for storing the image data. A number for the buffer rows of the buffer can be smaller than a number for the buffer columns of the buffer to reduce the buffer size.
Abstract:
An image sensor comprising: an image sensing matrix, comprising at least one image sensing unit, for generating at least one image sensing signal according to a sensed image; an analog to digital converter, for converting the image sensing signal to a digital image sensing signal; an adjusting unit, for adjusting the digital image sensing signal to be an adjusted digital image sensing signal according to at least one adjusting parameter and the digital image sensing signal; an operational circuit, for computing at least part of brightness of the sensed image sensed by the image sensing unit according to the adjusted digital image sensing signal to generate at least one operational brightness signal; and a control unit, for adjusting the adjusting parameter, such that brightness information generated based on brightness values, which corresponds to the operational brightness signal, falls in a predetermined range.