Abstract:
Methods and apparatus for determining a depth of an object within a scene are provided. Image data of a scene can be captured using a lens configured to project an image of the scene onto an image sensor. The lens has a known focal length and is movable between at least a first lens position and a second lens position. A first image of the scene is captured with the lens at a first lens position, and a second image of the scene is captured with the lens at a second, different position. By measuring a first dimension of the object using the first image and a second dimension of the object using the second image, a depth of the object may be determined based upon a ratio of the first and second dimensions, the focal length of the lens, and a distance between the first and second lens positions.
Abstract:
Systems and methods for error correction in structured light are disclosed. In one aspect, a method includes receiving, via a receiver sensor, a structured light image of at least a portion of a composite code mask encoding a plurality of codewords, the image including an invalid codeword. The method further includes detecting the invalid codeword. The method further includes generating a plurality of candidate codewords based on the invalid codeword. The method further includes selecting one of the plurality of candidate codewords to replace the invalid codeword. The method further includes generating a depth map for an image of the scene based on the selected candidate codeword. The method further includes generating a digital representation of a scene based on the depth map. The method further includes outputting the digital representation of the scene to an output device.
Abstract:
Systems and methods for controlling structured light laser systems are disclosed. One aspect is a structured light system. The system includes a memory device configured to store a depth map. The system further includes an image projecting device including a laser system configured to project codewords. The system further includes a receiver device including a sensor, the receiver device configured to sense the projected codewords reflected from an object. The system further includes a processing circuit configured to retrieve a portion of the depth map and calculate expected codewords from the depth map. The system further includes a feedback system configured to control the output power of the laser system based on the sensed codewords and the expected codewords.
Abstract:
Systems and methods for error correction in structured light are disclosed. In one aspect, a method includes receiving, via a receiver sensor, a structured light image of at least a portion of a composite code mask encoding a plurality of codewords, the image including an invalid codeword. The method further includes detecting the invalid codeword. The method further includes generating a plurality of candidate codewords based on the invalid codeword. The method further includes selecting one of the plurality of candidate codewords to replace the invalid codeword. The method further includes generating a depth map for an image of the scene based on the selected candidate codeword. The method further includes generating a digital representation of a scene based on the depth map. The method further includes outputting the digital representation of the scene to an output device.
Abstract:
A method operational on a transmitter device is provided for projecting a composite code mask. A composite code mask on a tangible medium is obtained, where the composite code mask includes a code layer combined with a carrier layer. The code layer may include uniquely identifiable spatially-coded codewords defined by a plurality of symbols. The carrier layer may be independently ascertainable and distinct from the code layer and includes a plurality of reference objects that are robust to distortion upon projection. At least one of the code layer and carrier layer may be pre-shaped by a synthetic point spread function prior to projection. At least a portion of the composite code mask is projected, by the transmitter device, onto a target object to help a receiver ascertain depth information for the target object with a single projection of the composite code mask.
Abstract:
Aspects of the present disclosure relate to systems and methods for time-of-flight ranging. An example time-of-flight system includes a transmitter including a plurality of light emitters for transmitting focused light, the plurality of light emitters including a first group of light emitters for transmitting focused light with a first field of transmission and a second group of light emitters for transmitting focused light with a second field of transmission. The first field of transmission at a depth from the transmitter is larger than the second field of transmission at the depth from the transmitter. The time-of-flight system also includes a receiver to receive reflections of the transmitted light.
Abstract:
Methods and apparatus for determining a depth of an object within a scene are provided. Image data of a scene can be captured using a lens configured to project an image of the scene onto an image sensor. The lens has a known focal length and is movable between at least a first lens position and a second lens position. A first image of the scene is captured with the lens at a first lens position, and a second image of the scene is captured with the lens at a second, different position. By measuring a first dimension of the object using the first image and a second dimension of the object using the second image, a depth of the object may be determined based upon a ratio of the first and second dimensions, the focal length of the lens, and a distance between the first and second lens positions.
Abstract:
A method performed by an electronic device is described. The method includes obtaining a first image from a first camera, the first camera having a first focal length and a first field of view. The method also includes obtaining a second image from a second camera, the second camera having a second focal length and a second field of view disposed within the first field of view. The method further includes aligning at least a portion of the first image and at least a portion of the second image to produce aligned images. The method additionally includes fusing the aligned images based on a diffusion kernel to produce a fused image. The diffusion kernel indicates a threshold level over a gray level range. The method also includes outputting the fused image. The method may be performed for each of a plurality of frames of a video feed.
Abstract:
A method includes identifying one or more codewords of a bit sequence that fail to satisfy at least one codeword constraint. The method also includes removing the one or more codewords from the bit sequence to generate a punctured bit sequence. The method includes, in response to determining that the punctured bit sequence is symmetric, generating a hermitian symmetric codebook primitive based at least in part on the punctured bit sequence, where the hermitian symmetric codebook primitive is useable to form a diffractive optical element (DOE) of a structured light depth sensing system.
Abstract:
Systems and method for generating depth maps using active sensing technology, for scenes with moving objects, is disclosed. One aspect provides for a method that includes estimating areas in adjacent frames that correspond to a moving object by generating a probability map for each received frame, the probability map comprising a probability value at each pixel. The method also includes computing a convex temporal average map using a plurality of the reflected structured light frames including at least the prior frame received at time t−1, the received frame received at time t, and the next frame received at time t+1, the value at each pixel of the convex temporal average map weighted and normalized by the probability map at each pixel at each time. The method also includes determining the codewords at each pixel in the convex temporal average map, and generating a depth map from the determined codewords.