Abstract:
A method operational on a receiver device for decoding a codeword is provided. At least a portion of a composite code mask is obtained, via a receiver sensor, and projected on the surface of a target object. The composite code mask may be defined by a code layer and a carrier layer. A code layer of uniquely identifiable spatially-coded codewords may be defined by a plurality of symbols. A carrier layer may be independently ascertainable and distinct from the code layer and may include a plurality of reference objects that are robust to distortion upon projection. At least one of the code layer and carrier layer may have been pre-shaped by a synthetic point spread function prior to projection. The code layer may be adjusted, at a processing circuit, for distortion based on the reference objects within the portion of the composite code mask.
Abstract:
Described are systems and methods for measuring objects using stereoscopic imaging. After determining keypoints within a set of stereoscopic images, a user may select a desired object within an imaged scene to be measured. Using depth map information and information about the boundary of the selected object, the desired measurement may be calculated and displayed to the user on a display device. Tracking of the object in three dimensions and continuous updating of the measurement of a selected object may also be performed as the object or the imaging device is moved.
Abstract:
A method operational on a receiver device for decoding a codeword is provided. At least a portion of a composite code mask is obtained, via a receiver sensor, and projected on the surface of a target object. The composite code mask may be defined by a code layer and a carrier layer. A code layer of uniquely identifiable spatially-coded codewords may be defined by a plurality of symbols. A carrier layer may be independently ascertainable and distinct from the code layer and may include a plurality of reference objects that are robust to distortion upon projection. At least one of the code layer and carrier layer may have been pre-shaped by a synthetic point spread function prior to projection. The code layer may be adjusted, at a processing circuit, for distortion based on the reference objects within the portion of the composite code mask.
Abstract:
A structured light three-dimensional (3D) depth map based on content filtering is disclosed. In a particular embodiment, a method includes receiving, at a receiver device, image data that corresponds to a structured light image. The method further includes processing the image data to decode depth information based on a pattern of projected coded light. The depth information corresponds to a depth map. The method also includes performing one or more filtering operations on the image data. An output of the one or more filtering operations includes filtered image data. The method further includes performing a comparison of the depth information to the filtered image data and modifying the depth information based on the comparison to generate a modified depth map.
Abstract:
Techniques are described for determining a contact location on a touch screen panel. The techniques transmit an optical signal that includes digital bits through the touch screen, and determine for which digital bits the optical power level reduced. Based on the determined digital bits, the techniques determine the contact location on the touch screen panel.
Abstract:
Methods and apparatus for sharing a bus between multiple imaging sensors, include, in some aspects, a device having at least two imaging sensors, an electronic hardware processor, and an imaging sensor controller. The imaging sensor controller includes first clock and data lines, operably coupling the electronic hardware processor to the imaging sensor controller, and a second clock line, operably coupling the imaging sensor controller to the first imaging sensor and the second imaging sensor. A second data line operably couples the imaging sensor controller to the first imaging sensor. A third data line operably couples the sensor controller to the second imaging sensor. The imaging sensor controller is configured to use the second clock line, and second data line to send a first command to the first imaging sensor, and, use the second clock line, and third data line to send a second command to the second imaging sensor.
Abstract:
A method for generating codes for a code mask is provided. A plurality of symbols may be arranged into an n1 by n2 symbol structure, where n1 and n2 are integer values. A plurality of codewords may be defined from different overlapping k1 by k2 windows within the symbol structure, wherein co-linear and spatially overlapping windows define unique codewords, and the codewords are unique in a first direction of the symbol structure but are repeated in a second direction that is perpendicular to the first direction. A plurality of the symbol structures as a code mask, wherein symbols in two adjacent k1 by k2 windows are selected so as to avoid codeword aliasing of codewords in the two adjacent k1 by k2 windows.
Abstract:
An interactive display, including a cover glass having a front surface that includes a viewing area provides an input/output (I/O) interface for a user of an electronic device. An arrangement includes a processor, a light source, and a camera disposed outside the periphery of the viewing area coplanar with or behind the cover glass. The camera receives scattered light resulting from interaction, with an object, of light outputted from the interactive display, the outputted light being received by the cover glass from the object and directed toward the camera. The processor determines, from image data output by the camera, an azimuthal angle of the object with respect to an optical axis of the camera and/or a distance of the object from the camera.