Abstract:
An integrated circuit dynamically compensates for circuit aging by measuring the aging with an aging sensor. The aging sensor uses the same circuit to measure circuit speeds in both aged and un-aged conditions. An example aging sensor includes two delay lines. The delay lines are controlled to be in a static aging state or the delay lines are coupled to form a ring oscillator that can operate in an aged state where the frequency is slowed by aging or in an un-aged state where the frequency is not slowed by aging. The integrated circuit uses the aging measurements for dynamic voltage and frequency scaling. The dynamic voltage and frequency scaling uses a table of operating frequencies and corresponding voltage that is periodically updated based on the aging measurements. The integrated circuit use information about the relationship between the aging measurements and circuit performance to update the table.
Abstract:
A charge pump is disclosed herein that includes an output node configured to be coupled to a charge storage device configured to store a charge to produce a control voltage based on the charge stored in the charge storage device; a charging circuit configured to provide charge to the charge storage device; a discharging circuit configured to remove charge from the charge storage device; and an amplifier. The amplifier includes an inverting input configured to receive the control voltage from the output node as a first input signal; and, a non-inverting input configured to receive a second input signal including a bias voltage, wherein the amplifier is configured to attempt to match respective levels of the bias voltage and the control voltage when the charge in the charge storage device is changing.
Abstract:
A master measure circuit is disclosed that may select from various nodes on a delay path carrying a signal. The master measure circuit measures the delay for propagation of the signal from one selected node to another selected node and controls an adjustable delay circuit in the delay path accordingly.