Abstract:
Methods, devices, and computer program products for using touch orientation to distinguish between users are disclosed herein. In one aspect, a method of identifying a user of a touch device from a plurality of users of the touch device is described. The method includes receiving touch data from a touch panel of the touch device, the touch data indicating a user's touch on the touch screen. The method further includes determining an orientation of the user's touch based on the received touch data. Finally, the method includes identifying the user of the plurality of users which touched the device, based at least in part on the orientation of the touch.
Abstract:
Embodiments of the present invention are directed toward providing ongoing authentication using biometric data. Fingerprints and/or other biometric data can be captured during the normal use of an electronic device, such as typing on a keyboard, and compared with associated reference biometrics to provide ongoing authentication to an application while the electronic device is being used. Comparison results may further be combined with additional physiological or behavioral biometrics to determine a level of authentication encompassing multiple biometric inputs and/or types.
Abstract:
Methods, systems, computer-readable media, and apparatuses for adjusting the manner in which haptic feedback is provided to the user based on physical characteristics of the user. Physical characteristics may include stable physical characteristics that are non-changing with respect to a level of physical activity of the user. Examples of such stable physical characteristics may include age, gender, race, visual impairments and/or other physical characteristics. In some embodiments, the mobile device may adjust the haptic feedback by adjusting the intensity of the haptic feedback, frequency of the haptic feedback, duration for which the haptic feedback is provided to the user and changing a type of haptic feedback provided to the user of the device.
Abstract:
Methods, systems, computer-readable media, and apparatuses for providing haptic feedback to assist in capturing images are presented. In some embodiments, a method for providing haptic feedback to assist in capturing images includes obtaining, via an image capture device, an ambient light measurement of an environment in which the image capture device is present. The method further includes detecting, via the image capture device, one or more objects within one or more image frames captured by the image capture device. The method also includes changing, via the image capture device, a manner in which haptic feedback is provided to a user of the image capture device, based at least in part on the obtained ambient light measurement and the detected one or more objects.
Abstract:
A biometric security method and apparatus for a capacitive sensor system is provided herein, where the method may include capturing a set of raw capacitive frames for a body part via the capacitive sensor system, wherein each raw capacitive frame includes a distribution of a plurality of capacitance levels measured from the body part; creating a capacitive profile based on the set of raw capacitive frames; comparing a first value in the capacitive profile to a second value in a biometric template generated from an enrolled body part, wherein the first value and the second value are located at a similar location with respect to the capacitive profile; and, generating an authentication signal based on a difference between the first value and the second value.