Abstract:
Examples disclosed herein may relate to electronic devices, and more particularly to methods, apparatuses and articles of manufacture for use in a mobile device having one or more onboard sensors and a wireless signal based positioning capability.
Abstract:
A method being for facilitating positioning determination of a UE includes: obtaining motion information indicative of motion of the UE; obtaining positioning information based on positioning signals received by the UE; determining a validity status of map data based on whether the positioning information, the motion of the UE, and the map data, that include locations of physical environmental features, are consistent, wherein the validity status is determined to be valid in response to the positioning information, the motion of the UE, and the map data being consistent; and determining at least one of a position estimate for the UE, or a direction of motion of the UE, based on the map data and based on the validity status being valid.
Abstract:
Aspects presented herein may improve the performance and accuracy of GNSS-based positioning, where a position-grid based ML may be implemented by a UE or a location server to improve the accuracy of identifying a warm-start position of the UE. In one aspect, a UE or a location server determines, for each grid point within a range of an initial position of a UE, a set of PR residuals based on PRs for each SV of a set of SVs. The UE or the location server determines an estimated position of the UE based on the sets of determined PR residuals.
Abstract:
Certain aspects of the present disclosure generally relate to magnetometer calibration. In some aspects, a device may obtain multiple sets of magnetic field measurements corresponding to multiple local magnetic field strengths, wherein each set of magnetic field measurements is measured in association with an unknown local magnetic field strength. The device may calculate multiple error values using the multiple sets of magnetic field measurements, estimated values of the multiple local magnetic field strengths, and estimated hard iron bias values. The device may identify a set of hard iron bias values for magnetometer calibration based at least in part on comparing the multiple error values. The device may calibrate a magnetometer using the identified set of hard iron bias values.
Abstract:
Examples disclosed herein may relate to electronic devices, and more particularly to methods, apparatuses and articles of manufacture for use in a mobile device having one or more onboard sensors and a wireless signal based positioning capability.
Abstract:
Certain aspects of the present disclosure generally relate to magnetometer calibration. In some aspects, a device may obtain multiple sets of magnetic field measurements corresponding to multiple local magnetic field strengths, wherein each set of magnetic field measurements is measured in association with an unknown local magnetic field strength. The device may calculate multiple error values using the multiple sets of magnetic field measurements, estimated values of the multiple local magnetic field strengths, and estimated hard iron bias values. The device may identify a set of hard iron bias values for magnetometer calibration based at least in part on comparing the multiple error values. The device may calibrate a magnetometer using the identified set of hard iron bias values.
Abstract:
A mobile device is capable of accurately maintaining a global time based on Satellite Position System (SPS) time decoded from an SPS signal using a clock signal acquired from a wireless communication transmitter, such as a base station or access point. The time uncertainty is reduced or minimized by determining a relative change in position of the mobile device with respect to a base position, e.g., a reference position determined from a previous SPS session. The time uncertainty may be determined based on the relative change in position with respect to the base position by transforming it into time units based on the speed of light. The global time may be updated based on the determined time uncertainty, which may be used in a subsequent SPS session to reduce the search window to acquire SPS satellite signals.
Abstract:
Techniques provided herein are directed toward resolving a direction of travel of a mobile device based on MEMS sensor data by identifying a type of motion the mobile device is subject to and offsetting vertical acceleration data with horizontal acceleration data by a predetermined time offset based on the identified type of motion. The offset vertical and horizontal acceleration data can then be used to resolve, with an increased accuracy, a direction of travel of the mobile device.