Abstract:
A microscope device having dual emission capability, wherein detrimental effects of image-aberrations and -distortions are reduced. By providing the means for reflecting the one beam in a manner so as to invert its handedness and the means for reflecting the second beam in a manner so as to preserve its handedness, a fully symmetrical configuration is obtained, where corresponding image points in both color/polarisation channels all experience the same field-dependent aberrations.
Abstract:
A device for confocal observation of a specimen, having a mask, which is located in the illumination beam path and the image beam path and is rotatable around a central axis, the mask being provided with openings for generating an illumination pattern moving on the specimen, an arrangement of a plurality of focusing microoptics which is adjusted to the geometric arrangement of the openings of the mask and to the rotation of the mask in order to concentrate the illumination light by each of the microoptics into a respective one of the openings of the mask, and a beam splitter for separating light from the specimen from illumination light, wherein the beam splitter is arranged in the beam path between the mask and the arrangement of the microoptics, and wherein an optical arrangement is provided in the beam path between the mask and the arrangement of the microoptics.
Abstract:
A microscope system having an objective lens (10) defining a central optical axis (14) of the microscope system; an optical beam hub unit (18, 20) having a center coinciding with the central optical axis, a plurality of optical beam ports (24, 26, 30, 32; 214) arranged radially around the central optical axis, a beam multiplexer system (22, 28, 222) arranged in the center of the hub unit, and a device for rotating the beam multiplexer system around the central optical axis for alternatively selecting at least one of the beam ports. The beam ports include at least two elements selected any one of input ports, output ports and dual input/output ports.
Abstract:
An arrangement for confocal or quasifocal fluorescence microscopy is suggested in which, in an image beam path, there are arranged in succession, an objective arrangement for acquiring an image of a specimen to be examined, at least one scanner mirror located downstream of the objective arrangement, a tube lens, a confocal first strip diaphragm, a first spectrometer arrangement, a wavelength selection diaphragm for selection of the emission wavelength, a second spectrometer arrangement which is analogous to the first spectrometer arrangement, and a detector for acquiring the brightness distribution. In which, by means of the wavelength selection diaphragm, coupling of excitation light takes place by the reflecting back of an excitation beam path to the wavelength selection diaphragm from a source of monochromatic excitation light by a strip diaphragm which corresponds to the confocal strip diaphragm and a third spectrometer arrangement which is analogous to the first spectrometer arrangement. The image beam path and excitation beam path are constituted and matched to one another such that the light emitted from the specimen reaches the detector by way of the wavelength selection diaphragm. Excitation light from the wavelength selection diaphragm, however, is prevented from hitting the detector, but traverses the confocal strip diaphragm.
Abstract:
There is provided a microscope device comprising: means for creating a collimated beam of light collected from a sample and comprising at least a first spectral range and a second spectral range, means for separating the collimated beam into a first beam containing a higher percentage of light of the first spectral range than light of the second spectral range and a second beam containing a lower percentage of light of the first spectral range than light of the second spectral range, means for reflecting the first beam, means for reflecting the second beam, means for combining the first beam and the second beam, a detector, and means for imaging the combined first and second beam onto the detector in order to create an image of the sample on the detector, wherein the means for reflecting the first beam and the means for reflecting the second beam are arranged in such a manner that the image created by the first beam and the image created by the second beam are shifted relative to each other on the detector, wherein the means for reflecting the first beam is adapted to invert handedness of the first beam, and wherein the means for reflecting the second beam is adapted to preserve handedness of the second beam.
Abstract:
A microscope system having a plurality of exchangeable objective lenses (10); an objective lens changeover element (18) for supporting each of the objective lenses which is operable for placing a selected one of said objective lenses into an optical axis (22) of the microscope system, wherein each objective lens is supported by the changeover element in such a manner that each objective lens is moveable coaxially with respect to the optical axis and relative to the changeover element; and an actuator element (20, 40) for moving the selected one of the objective lenses coaxially relative to the optical axis and relative to the changeover element for focusing the selected one of the objective lenses relative to a specimen (12).
Abstract:
A microscope for transmission viewing of a speciment including a light source for producing a light beam; an objective lens positioned for focusing the light beam produced by said light source on an area of the specimen for illuminating said area; and a reflector positioned for reflecting light transmitted through the specimen back through the illuminated area of the specimen.