Abstract:
A point-scanning luminescent microscope, especially for studying biological objects, has at least one collimated light source for producing an excitation light beam, an optical arrangement which focuses the light of the excitation light source on an object to be studied, at least one detector arrangement for acquiring light emitted by the object, an optical arrangement which collects the light emitted by the object and supplies it to the detector arrangement, and a scanner arrangement which causes relative movement between the scanning light beam and the object in at least two directions. The scanner arrangement has piezoactuators for achieving scanning movements between the scanning light beam and object. The detector arrangement can have a surface sensor which forms a confocal diaphragm. The light source can be designed to deliver rectangular pulses. When the microscope is designed for twin-photon fluorescent microscopy, an objective lens is provided for illuminating the object and can be is used, at the same time, for collecting some of the photons emitted by the object, and a second detector is provided behind a condenser lens of the objective lens.
Abstract:
A device for confocal observation of a specimen, having a mask, which is located in the illumination beam path and the image beam path and is rotatable around a central axis, the mask being provided with openings for generating an illumination pattern moving on the specimen, an arrangement of a plurality of focusing microoptics which is adjusted to the geometric arrangement of the openings of the mask and to the rotation of the mask in order to concentrate the illumination light by each of the microoptics into a respective one of the openings of the mask, and a beam splitter for separating light from the specimen from illumination light, wherein the beam splitter is arranged in the beam path between the mask and the arrangement of the microoptics, and wherein an optical arrangement is provided in the beam path between the mask and the arrangement of the microoptics.
Abstract:
A microscope having a device for merging different light beams, guiding them to a main beam outlet, and scrambling them in a way that a homogeneous intensity distribution is achieved there. When critical illumination is employed this carries over to a homogeneous illumination of the object plane of the microscope within the boundaries of a field of view determined by the boundaries of the main beam outlet. The device comprises a plurality of optical elements stacked in a row. The optical elements have light guiding properties and plane mating surfaces in a connection area between two adjacent optical elements, wherein the mating surfaces are inclined and serve as beam splitting surfaces.
Abstract:
A fluorescence-measuring device for scanning a specimen (36, 226) with a selection element (26, 206). Excitation light is coupled to an excitation beam path and guided to the specimen surface. Fluorescent light, which is emitted by the specimen surface, crosses the excitation beam path in a reverse direction and at the same time is decoupled from the excitation beam path. In the beam path, there is a first dispersive element (30, 210) so that the fluorescent light emitted by the specimen surface can strike the selection element spectrally split. The selection element includes a first area (48, 240) and a second area (26, 242) allowing selection between the excitation and fluorescent light. According to a first aspect, a spatial extension of a transmission area (26) is adjustable in order to adjust the transmitted wavelength range of the emission light. According to a second aspect, the selection element (206) makes it possible to operate with a coherent excitation having several laser lines. A two-dimensional confocal measurement arrangement can be accomplished and the emission light separated from the excitation light can be detected with spectral resolution.
Abstract:
A microscope device comprising a microscope objective and a plate-like body limited by a flat top face and a flat lower face essentially parallel thereto, with the microscope objective being connected to the plate-like body, and with a portion of a beam path of the microscope device extending above and/or below the plate-like body, wherein another portion of the beam path of the microscope device extends, essentially parallel to the top face and the lower face, within a recess within the plate-like body.
Abstract:
There is provided a method for a microscope device for optionally examining a sample by at least a first light beam bundle from a first direction or a second light beam bundle from a second direction different to the first direction, having a microscope objective and a beam deflection element, wherein the beam deflection element is operable by a drive in order to optionally couple the first light beam bundle or the second light beam bundle into the microscope objective, and wherein the beam deflection element is rotatable by the drive in order to optionally change at least an exit direction of the first light beam bundle from the beam deflection element if the first light beam bundle is coupled into the microscope objective.
Abstract:
A microscope system having an objective lens (10) defining a central optical axis (14) of the microscope system; an optical beam hub unit (18, 20) having a center coinciding with the central optical axis, a plurality of optical beam ports (24, 26, 30, 32; 214) arranged radially around the central optical axis, a beam multiplexer system (22, 28, 222) arranged in the center of the hub unit, and a device for rotating the beam multiplexer system around the central optical axis for alternatively selecting at least one of the beam ports. The beam ports include at least two elements selected any one of input ports, output ports and dual input/output ports.
Abstract:
A microscope system having a plurality of exchangeable objective lenses (10); an objective lens changeover element (18) for supporting each of the objective lenses which is operable for placing a selected one of said objective lenses into an optical axis (22) of the microscope system, wherein each objective lens is supported by the changeover element in such a manner that each objective lens is moveable coaxially with respect to the optical axis and relative to the changeover element; and an actuator element (20, 40) for moving the selected one of the objective lenses coaxially relative to the optical axis and relative to the changeover element for focusing the selected one of the objective lenses relative to a specimen (12).
Abstract:
An apparatus for total internal reflection microscopy of a sample, comprising a microscope objective lens; an excitation beam path for passing light through the objective lens to said sample; and a coupling element arranged in a back focal plane of the objective lens or in a plane which is conjugate to said back focal plane; said coupling element comprising a first area for relaying light to the objective lens for total internal reflection illumination of said sample and a second area; wherein said second area is capable of separating light emitted by said sample and passing through said excitation beam path in reverse direction from said excitation beam path; wherein said second area is spatially separate from said first area and does not overlap with said first area; and wherein a distance between said optical axis of the objective lens and that boundary of said first area which is nearer to said optical axis of the objective lens is selected such that the light beams passing from said first area into the objective lens are imaged by the objective lens at angles onto said sample for which total reflection of these light beams occurs.
Abstract:
The invention relates to a microscope arrangement provided with: a microscope (10) having at least two optical outputs (12, 14) for outputting a fluorescence signal and a switching arrangement (16) for switching the output of the fluorescence signal between the optical outputs; a beam splitter arrangement (18); optical elements (28, 30) for generating a separate partial beam path (24, 26) associated with each output in such a way that the respective fluorescence signal of each of the outputs is superimposed at the beam splitter arrangement after passing through the respective partial beam path; and also at least two optical detectors (20, 22), wherein for each of the partial beam paths, one of the detectors is located behind the beam splitter, seen from the microscope, in reflection and another of the detectors is located behind the beam splitter arrangement, seen from the microscope, in transmission.