-
公开(公告)号:US20240130621A1
公开(公告)日:2024-04-25
申请号:US18386877
申请日:2023-11-02
Applicant: Omni Medsci, Inc.
Inventor: Mohammed N. ISLAM
IPC: A61B5/00 , A61B5/145 , A61B5/1455 , A61C19/04 , G01J3/02 , G01J3/10 , G01J3/14 , G01J3/28 , G01J3/42 , G01J3/453 , G01N21/35 , G01N21/3504 , G01N21/3563 , G01N21/359 , G01N21/39 , G01N21/88 , G01N33/02 , G01N33/15 , G01N33/44 , G01N33/49 , G16H40/67 , G16Z99/00
CPC classification number: A61B5/0088 , A61B5/0013 , A61B5/0022 , A61B5/0075 , A61B5/0086 , A61B5/14532 , A61B5/14546 , A61B5/1455 , A61B5/4547 , A61B5/6801 , A61B5/7203 , A61B5/7257 , A61B5/7405 , A61B5/742 , A61C19/04 , G01J3/02 , G01J3/0218 , G01J3/108 , G01J3/14 , G01J3/28 , G01J3/2823 , G01J3/42 , G01J3/453 , G01N21/35 , G01N21/3504 , G01N21/3563 , G01N21/359 , G01N21/39 , G01N21/88 , G01N33/02 , G01N33/025 , G01N33/15 , G01N33/442 , G01N33/49 , G16H40/67 , G16Z99/00 , G01N2201/129 , H01S3/302
Abstract: A measurement system may comprise an actively illuminated camera system, in some embodiments coupled to a time-of-flight sensor or an array of laser diodes beam split into a plurality of spatially separated lights. The camera system may capture two or three dimensional images, and the light source may comprise semiconductor diodes, such as light emitting diodes. The system includes a processor coupled to non-transitory computer readable medium and configured to use artificial intelligence to make one or more decisions. The processing may also involve artificial intelligence or machine learning techniques to analyze anomalous occurrences, or generative artificial intelligence to interface with a user or improve the performance of camera-based systems. Algorithms may also be used to improve the performance of generative artificial intelligence processing. The camera output may be fused with data from other sensors, and the camera may also capture information about the pose or gestures of a user.
-
公开(公告)号:US11662251B1
公开(公告)日:2023-05-30
申请号:US17688227
申请日:2022-03-07
Applicant: Wavefront Research, Inc.
Inventor: Thomas A. Mitchell
CPC classification number: G01J3/2823 , G01J3/02 , G01J3/0208 , G01J3/14 , G01J3/18 , G01J3/28 , G01J3/36 , G01J2003/2826
Abstract: An imaging optical system including a plurality of imaging optical sub-systems, each having at least one optical element and receiving light from a source, and a plurality of spectrometer optical sub-systems, each spectrometer optical sub-system receiving light from at least one of the imaging optical sub-systems, each imaging optical sub-system and spectrometer optical sub-system combination having a spatial distortion characteristic, each spatial distortion characteristic having a predetermined relationship to the other spatial distortion characteristics.
-
3.
公开(公告)号:US20190017871A1
公开(公告)日:2019-01-17
申请号:US16031409
申请日:2018-07-10
Applicant: NANOLAMBDA KOREA
Inventor: Byung IL Choi
CPC classification number: G01J3/0254 , G01J3/0213 , G01J3/0218 , G01J3/0297 , G01J3/14 , G01J3/18 , G01J3/28 , G01J3/2803 , G01J3/2823 , G01J2003/1208 , G01J2003/2806
Abstract: Spectrum sensors can be continuously calibrated in a manufacturing environment employing a continuously moving platform that carries the spectrum sensors in combination with spatially separated light spectra illuminating a region of the platform. A plurality of spectrum sensors, each including multiple sensor pixels, can be placed on the platform. The spatially separated light spectra can be illuminated over an area of the platform. The plurality of spectrum sensors can be moved with the platform through a region of the spatially separated light spectrum. Each sensor pixel for each of the plurality of spectrum sensors can be calibrated based on response of each spectral channel during passage through the spatially separated light spectra. The entire spectra from a light source can be employed simultaneously to calibrate multiple spectrum sensors in the manufacturing environment.
-
公开(公告)号:US20190011364A1
公开(公告)日:2019-01-10
申请号:US15760005
申请日:2016-09-08
Applicant: Lorenz SYKORA
Inventor: Lorenz SYKORA
IPC: G01N21/552 , A61B5/1455 , G01N21/3577 , G01J3/14
CPC classification number: G01N21/552 , A61B5/1455 , G01J3/14 , G01N21/3577 , G01N2021/3595
Abstract: An ATR reflection element includes a main body with a first effective refractive index n1, a transmission layer which comprises a first layer boundary, and an opposite second layer boundary. The transmission layer takes up a fluid by way of the second layer boundary, wherein the transmission layer adjoins the main body. The boundary between the transmission layer and the main body is formed by the first layer boundary, wherein the transmission layer at the second layer boundary has a second effective refractive index n2. The first effective refractive index n1 is greater than the second effective refractive index n2 and the second effective refractive index n2 is greater than 1, wherein the first effective refractive index n1 and the second effective refractive index n2 are determined in each case in a vacuum at 25° C. at the IR wavelength λATR, wherein λATR is selected from the wavelength range between 2 μm and 20 μm. Furthermore, the disclosure relates to an ATR spectrometer comprising said ATR reflection element, and an ATR spectroscopy method.
-
5.
公开(公告)号:US20180340824A1
公开(公告)日:2018-11-29
申请号:US15982296
申请日:2018-05-17
Applicant: Ocean Optics, Inc.
Inventor: Kirk Clendinning
CPC classification number: G01J3/04 , G01J3/0208 , G01J3/021 , G01J3/0221 , G01J3/14 , G01J3/28 , G02B6/26
Abstract: An optical slit device that combines microelectromechanical design techniques, semiconductor laser technology, and micro-optics to provide a spectrometer entrance slit on a semiconductor substrate with integrated calibration light sources, which integrated light enters the entrance slit and is transmitted down the same optical path as a light source under test and by which the spectrometer can be wavelength calibrated in situ is disclosed.
-
公开(公告)号:US20180296097A1
公开(公告)日:2018-10-18
申请号:US16015737
申请日:2018-06-22
Applicant: OMNI MEDSCI, INC.
Inventor: Mohammed N. ISLAM
IPC: A61B5/00 , G01J3/28 , A61B5/145 , A61B5/1455 , G01N21/39 , G06F19/00 , G01N21/88 , G16H40/67 , G01J3/02 , G01J3/10 , G01J3/14 , G01N33/02 , G01N21/359 , G01N21/3563 , G01N21/35 , G01N33/49 , G01N33/44 , G01N33/15 , G01J3/453 , G01J3/42 , G01J3/18 , G01J3/12 , G01M3/38 , G01N21/85 , G01N21/95 , H01S3/00 , H01S3/30 , H01S3/067
CPC classification number: A61B5/0088 , A61B5/0013 , A61B5/0022 , A61B5/0075 , A61B5/0086 , A61B5/14532 , A61B5/14546 , A61B5/1455 , A61B5/4547 , A61B5/6801 , A61B5/7257 , A61B5/7405 , A61B5/742 , A61B2562/0233 , A61B2562/0238 , A61B2562/146 , A61B2576/02 , G01J3/0218 , G01J3/108 , G01J3/14 , G01J3/1838 , G01J3/28 , G01J3/2823 , G01J3/42 , G01J3/453 , G01J2003/104 , G01J2003/1208 , G01J2003/2826 , G01M3/38 , G01N21/35 , G01N21/3563 , G01N21/359 , G01N21/39 , G01N21/85 , G01N21/88 , G01N21/9508 , G01N33/02 , G01N33/025 , G01N33/15 , G01N33/442 , G01N33/49 , G01N2021/3595 , G01N2021/399 , G01N2201/061 , G01N2201/06113 , G01N2201/062 , G01N2201/08 , G01N2201/12 , G01N2201/129 , G06F19/00 , G16H40/67 , H01S3/0092 , H01S3/06758 , H01S3/302 , Y02A90/26
Abstract: A measurement system includes a light source having semiconductor sources, a multiplexer, and one or more fused silica fibers configured to form an output optical beam having one or more optical wavelengths modulated at a modulation frequency. A light beam set-up includes a monochromator forming a filtered optical beam. A measurement apparatus delivers the filtered optical beam to a sample. A receiver receives a spectroscopy output beam generated from the sample by the filtered optical beam. The receiver is configured to use a lock-in technique that detects the modulation frequency, and to generate first and second signals responsive to light received while the light source is off and on, respectively. The measurement system improves a signal-to-noise ratio of the spectroscopy output beam by differencing the first and second signals. The receiver processes the spectroscopy output beam using chemometrics or multivariate analysis to permit identification of materials within the sample.
-
公开(公告)号:US20180271377A1
公开(公告)日:2018-09-27
申请号:US15996526
申请日:2018-06-04
Applicant: Thomas Nathan Millikan
Inventor: Thomas Nathan Millikan
IPC: A61B5/00 , G06T7/90 , H04N7/18 , H04N5/33 , H04N5/232 , G01J1/58 , G01J3/02 , G01J3/10 , G01J3/14 , G06T7/00 , G01J3/51 , G01J3/36 , G01J3/28 , A61B5/11 , G01J3/12
CPC classification number: A61B5/0075 , A61B5/0071 , A61B5/0077 , A61B5/1112 , A61B5/743 , A61B2560/0242 , A61B2576/00 , G01J1/58 , G01J3/0208 , G01J3/0229 , G01J3/0264 , G01J3/027 , G01J3/10 , G01J3/14 , G01J3/2823 , G01J3/36 , G01J3/513 , G01J2003/1213 , G01J2003/2826 , G06T7/0012 , G06T7/90 , G06T2207/10024 , G06T2207/10048 , G06T2207/30088 , G06T2207/30196 , H04N5/23293 , H04N5/332 , H04N7/18 , H04N7/183 , H05K999/99
Abstract: Multispectral images, including ultraviolet light and its interactions with ultraviolet light-interactive compounds, can be captured, processed, and represented to a user. Ultraviolet-light related information can be conveniently provided to a user to allow the user to have awareness of UV characteristics and the user's risk to UV exposure.
-
公开(公告)号:US09958265B2
公开(公告)日:2018-05-01
申请号:US14816374
申请日:2015-08-03
Applicant: Sho Nagai , Kensuke Masuda , Go Maruyama , Yuji Yamanaka , Naohiro Kamijo , Kenji Kagitani
Inventor: Sho Nagai , Kensuke Masuda , Go Maruyama , Yuji Yamanaka , Naohiro Kamijo , Kenji Kagitani
IPC: G01J3/28 , G01B11/30 , G01J3/18 , G01J3/14 , G01N21/25 , G01N21/55 , G01N21/84 , G01J3/51 , G01J3/50 , G01N21/47 , G01N21/57 , G01N21/17 , G01N21/31
CPC classification number: G01B11/306 , G01B11/303 , G01J3/0208 , G01J3/14 , G01J3/18 , G01J3/2823 , G01J3/465 , G01J3/504 , G01J3/513 , G01N21/251 , G01N21/255 , G01N21/4738 , G01N21/4785 , G01N21/55 , G01N21/57 , G01N21/8422 , G01N2021/1776 , G01N2021/3177 , G01N2021/4711 , G01N2021/575 , G01N2201/0635
Abstract: A specimen measuring device includes: a light source device that irradiates a specimen surface of a specimen with illumination light from multiple illumination units at a plurality of illumination angles; a spectral camera device that is arranged above the specimen surface, spectrally separates reflected light from the specimen surface, and acquires 2D spectral information through a single image capturing operation; and a calculating unit that calculates deflection angle spectral information of the specimen surface used to measure a measurement value of a certain evaluation item of the specimen using a change in an optical geometrical condition of an illumination direction and an image capturing direction between pixels in an X axis direction and a Y axis direction of the spectral information.
-
公开(公告)号:US09861286B1
公开(公告)日:2018-01-09
申请号:US15686198
申请日:2017-08-25
Applicant: OMNI MEDSCI, INC.
Inventor: Mohammed N. Islam
IPC: G01J3/00 , A61B5/00 , G01N33/49 , G01N33/44 , G01N33/15 , G01N33/02 , G01N21/88 , G01N21/3563 , G01N21/359 , G01J3/453 , A61B5/145 , A61B5/1455 , H01S3/30 , G01N21/39 , G01M3/38 , G01J3/28 , G01J3/10 , G01J3/18 , G01J3/14
CPC classification number: A61B5/0088 , A61B5/0013 , A61B5/0022 , A61B5/0075 , A61B5/0086 , A61B5/14532 , A61B5/14546 , A61B5/1455 , A61B5/4547 , A61B5/6801 , A61B5/7257 , A61B5/7405 , A61B5/742 , A61B2562/0233 , A61B2562/0238 , A61B2562/146 , A61B2576/02 , G01J3/0218 , G01J3/108 , G01J3/14 , G01J3/1838 , G01J3/28 , G01J3/2823 , G01J3/42 , G01J3/453 , G01J2003/104 , G01J2003/1208 , G01J2003/2826 , G01M3/38 , G01N21/35 , G01N21/3563 , G01N21/359 , G01N21/39 , G01N21/85 , G01N21/88 , G01N21/9508 , G01N33/02 , G01N33/025 , G01N33/15 , G01N33/442 , G01N33/49 , G01N2021/3595 , G01N2021/399 , G01N2201/061 , G01N2201/06113 , G01N2201/062 , G01N2201/08 , G01N2201/12 , G01N2201/129 , G06F19/00 , G16H40/67 , H01S3/0092 , H01S3/06758 , H01S3/302
Abstract: A wearable device for use with a smart phone or tablet includes LEDs for measuring physiological parameters by modulating the LEDs and generating a near-infrared multi-wavelength optical beam. At least one LED emits at a first wavelength having a first penetration depth and at least another LED emits at a second wavelength having a second penetration depth into tissue. The device includes lenses that deliver the optical beam to the tissue, which reflects the first and second wavelengths. A receiver is configured to capture light while the LEDs are off and while at least one of the LEDs is on and to difference corresponding signals to improve a signal-to-noise ratio of the optical beam reflected from the tissue. The signal-to-noise ratio is further increased by increasing light intensity of at least one of the LEDs. The device generates an output signal representing a non-invasive measurement on blood within the tissue.
-
公开(公告)号:US20170350763A1
公开(公告)日:2017-12-07
申请号:US15524119
申请日:2015-11-05
Applicant: Carl Zeiss Microscopy GmbH
Inventor: David SHAFER , Tiemo ANHUT , Matthias WALD
CPC classification number: G01J3/4406 , G01J3/0208 , G01J3/021 , G01J3/14 , G01J3/18 , G01J3/36 , G01N21/6458 , G01N2021/6421 , G01N2201/068 , G02B21/0064 , G02B21/0076 , G02B21/16 , G02B21/361 , G02B27/0025 , G02B27/1013 , G02B27/126
Abstract: A detection device (113) for a microscope comprises a dispersive element (211) in the beam path (290) of light and a selection element (212). The selection element (212) separates a beam path (291) of a spectral portion of the light from the beam path (290) of the light. The detector device (113) furthermore comprises a focusing optical unit (213) configured to focus the beam path (291) of the spectral portion of the light onto a sensor (214). By way of example, the microscope may be a confocal microscope.
-
-
-
-
-
-
-
-
-