Abstract:
A power plant and method of operation is provided. The power plant comprises at least one main air compressor, an oxidizer unit configured to deliver a compressed oxygen-rich gas flow to at least one gas turbine assembly. Each assembly comprises a turbine combustor for mixing the compressed oxygen-rich gas flow with a recirculated gas flow and a fuel stream to burn a combustible mixture and form the recirculated gas flow. The assembly also comprises a recirculation loop for recirculating the recirculated gas flow from a turbine to a turbine compressor. The assembly further comprises a recirculated gas flow extraction path for extracting a portion of the recirculated gas flow from the assembly and delivering this to a gas separation system. The gas separation system separates the portion of the recirculated gas flow into a nitrogen portion and a carbon dioxide portion.
Abstract:
A method and system for preventing or reducing the risk of combustion instabilities in a gas turbine includes utilizing a turbine controller computer processor to compare predetermined and stored stable combustion characteristics, including rate of change of the characteristics, with actual operating combustion characteristics. If the actual operating combustion characteristics are divergent from stable combustion characteristics then the controller modifies one or more gas turbine operating parameters which most rapidly stabilize the operation of the gas turbine.
Abstract:
A gas turbine combustor including: a primary combustion chamber; a secondary combustion chamber downstream of the primary combustion chamber; a venturi having a venturi throat; a transition piece; a cap assembly attached to the primary combustion chamber, and an external turbulator member in operable communication with the cap assembly, wherein the primary combustion chamber includes a mixing hole arrangement for improving homogeneity of an air and fuel mixture in the combustor; the venturi throat is disposed within a predetermined distance upstream from the downstream end of the primary combustion chamber; the transition piece is composed of a duct body, with a plurality of dilution holes formed in the duct body; and the external turbulator member includes a step positioned at the second end of the centerbody, the step defining a radial distance about the second end of the centerbody.
Abstract:
A turbomachine includes a combustor assembly, a cap assembly attached to the combustor assembly, a centerbody within the cap assembly, a wall of the centerbody having a first end, a second end and an intermediate portion, and an external turbulator member in operable communication with the cap assembly. The external turbulator member is spaced from the wall to form a passage defined by a gap between the wall of the centerbody and the external turbulator. The external turbulator member includes a step positioned at the second end of the centerbody. The step defines a radial distance about the second end of the centerbody. The external turbulator member is formed having a step-to-gap ratio relative to the centerbody in a range of about 0.8 to about 1.2.
Abstract:
A method for assembling a gas turbine engine includes coupling a transition piece between a combustor liner and a nozzle assembly. The method also includes extending a first portion of a flow sleeve from the transition piece about at least a portion of the combustor liner. The method further includes coupling a second portion of the flow sleeve to the first portion of the flow sleeve such that the flow sleeve second portion extends from the flow sleeve first portion and at least partially about at least a portion of the transition piece. The flow sleeve second portion includes a scoop that cooperates with the transition piece to at least partially define a unitary cooling air passage that includes a unitary scoop-shaped opening. The scoop is oriented to introduce a substantially uniform cooling air flow to the transition piece.
Abstract:
A turbomachine includes a combustor assembly, a cap assembly attached to the combustor assembly, a centerbody within the cap assembly, a wall of the centerbody having a first end, a second end and an intermediate portion, and an external turbulator member in operable communication with the cap assembly. The external turbulator member is spaced from the wall to form a passage defined by a gap between the wall of the centerbody and the external turbulator. The external turbulator member includes a step positioned at the second end of the centerbody. The step defines a radial distance about the second end of the centerbody. The external turbulator member is formed having a step-to-gap ratio relative to the centerbody in a range of about 0.8 to about 1.2.
Abstract:
Disclosed is a mixing hole arrangement for improving homogeneity of an air and fuel mixture in a combustor, the mixing hole arrangement comprising a plurality of mixing holes defined by a liner, wherein at least one of the plurality of mixing holes is a mixing hole that is at least one of sized and positioned to impede penetration of a fluid flow into a primary mixing zone located in a head end of the combustor.
Abstract:
A combustor liner includes a forward end and an aft end, the aft end having a reduced diameter portion and a cooling and dilution sleeve overlying the reduced diameter portion thereby establishing a cooling plenum therebetween. A plurality of cooling and dilution air entry holes are formed in the cooling and dilution sleeve and a plurality of cooling and dilution air exit holes formed adjacent an aft edge of the liner such that, in use, cooling and dilution air flows through the cooling and dilution air entry holes, and through the plenum, exiting the cooling and dilution air exit holes, thereby cooling and dilution tuning the aft end of the combustor liner without having to remove the transition piece.
Abstract:
A combustor of a turbine, a method of retro-fitting a combustor of a turbine and a method of building a combustor of a turbine are each provided. The combustor includes a combustion chamber along which a dilution breach is defined, a casing perimetrically surrounding the combustion chamber so as to define an airflow between the casing and the combustion chamber, the airflow being configured to supply dilution air to the combustion chamber via the dilution breach, and an easy to adjust dilution airflow tuning part disposed on the casing and in communication with the airflow. The dilution airflow tuning part is configured to increase and/or decrease an available amount of the dilution air to be supplied to the combustion chamber.
Abstract:
Disclosed is a mixing hole arrangement for improving homogeneity of an air and fuel mixture in a combustor, the mixing hole arrangement comprising a plurality of mixing holes defined by a liner, wherein at least one of the plurality of mixing holes is a mixing hole that is at least one of sized and positioned to impede penetration of a fluid flow into a primary mixing zone located in a head end of the combustor.