Abstract:
System and method for determining a mapping operator for use in a pattern matching application, where the mapping operator enhances differences between respective objects of interest and background objects, e.g., objects not of interest. First and second information is received regarding an object of interest and objects that may appear with the object of interest in an acquired target data set, respectively. The mapping operator is determined using the first information and the second information by determining a template discrete curve characterizing the object of interest, determining one or more target discrete curves characterizing the background objects, and generating a mapping operator that enhances differences between the mapped template discrete curve and the mapped target discrete curves. The operator is stored in a memory and is operable to be used in a pattern matching application to locate instances of the object of interest in acquired target data sets or images.
Abstract:
System and method for determining the presence of an object of interest in a target image. Regions of a target image may be located that match an object of interest, e.g., in a template image, with respect to various information, e.g., luminance, color and/or other types of boundary information. The invention includes improved methods for mapping point sets or curves to new point sets or curves for curve matching. The method determines the presence of an object of interest in a target image despite of or using various types of topological transformations of the object of interest in the target image. A plurality of mapping operators are determined based on template curves and/or example target curves, e.g., background object curves. Pattern matching is performed on one or more target images using the mapping operators to generate pattern matching results, and the pattern matching results output.
Abstract:
A scanning system and method for locating a point within a region. The method may: 1) determine or locate a region of interest in the region; 2) determine one or more characteristics of the region of interest within the region, wherein the region of interest includes the point of interest; 3) determine a continuous trajectory based on the one or more characteristics of the region of interest; 4) measure the region of interest at a plurality of points along the continuous trajectory to generate a sample data set; 5) perform a surface fit of the sample data set using the approximate model to generate a parameterized surface; and 6) calculate a location of the point of interest based on the parameterized surface. The method may include measuring the region at and/or near the calculated location to confirm the solution, and may also include generating output comprising the results.
Abstract:
A system and method for scanning for an object within a region using a conformal scanning scheme. The system may comprise a computer which includes a CPU and a memory medium which is operable to store one or more programs executable by the CPU to perform the method. The method may: 1) determine the characteristic geometry of the region; 2) generate a conformal scanning curve based on the characteristic geometry of the region by performing a conformal mapping between the characteristic geometry and a first scanning curve to generate the conformal scanning curve, i.e., mapping points of the first scanning curve to the characteristic geometry of the region; and 3) scan the region using the conformal scanning curve. These measurements of the region produce data indicative of one or more characteristics of the object. The method may also generate output indicating the one or more characteristics of the object.
Abstract:
A signal analysis system/method, for identifying the closest vector in a vector collection to a given input signal vector, comprising an input, a memory, and a processing unit. The memory stores a collection of vectors, and a table of mutual distances between pairs of the vectors in the collection. The processing unit may receive an input vector corresponding to the input signal. The processing unit may be further configured to: (a) select a vector from a current collection; (b) compute the distance of the input vector to the selected vector; (c) determine if the computed distance is smaller than a bounding radius value; (d) perform an annular filtration in response to the computed distance not being smaller than the bounding radius value, wherein the annular filtration retains in the current collection only those vectors whose tabulated distances from the selected vector are greater than the computed distance minus a radius value, and less than the computed distance plus the radius value; and to iteratively perform (a), (b), (c) and (d) until the computed distance to the selected point is smaller than the radius value, whereupon, the processor may identify the selected vector as the solution vector (i.e. the closest vector of the vector collection to the input vector), and may provide an output indication to a user in response this identification.
Abstract:
System and method for determining the presence of an object of interest from a template image in an acquired target image, despite of or using various types of affine transformations of the object of interest in the target image. A template image discrete curve is determined from the template image corresponding to the object of interest, and a template curve canonical transform calculated based on the curve. The canonical transform is applied to the template curve to generate a mapped template curve. The target image is received, a target image discrete curve determined, and a target curve canonical transform computed based on the target curve canonical transform. The target canonical transform is applied to the target curve to generate a mapped target curve. Geometric pattern matching is performed using the mapped template and target image discrete curves to generate pattern matching results, and the pattern matching results are output.
Abstract:
System and method for determining the presence of an object of interest in a target image. Regions of a target image may be located that match an object of interest, e.g., in a template image, with respect to various information, e.g., luminance, color and/or other types of boundary information. The invention includes improved methods for mapping point sequences (e.g., pixel sequences) or curves to new point sets or curves for curve matching. The method determines the presence of an object of interest in a target image despite of or using various types of topological transformations of the object of interest in the target image. One or more mapping operators are determined based on template curves and/or example target curves. Pattern matching is performed on one or more target images using the mapping operator(s) to generate pattern matching results, and the pattern matching results output.
Abstract:
System and method for re-sampling discrete curves, thereby efficiently characterizing point sets or curves in a space. The method may also provide improved means for mapping point sets or curves to new point sets or curves for curve matching. A weight vector or function is determined based on a plurality of discrete curves, e.g., from one or more template data sets or images. The weight function enhances differences between weighted discrete curves. A set of orthonormal polynomials is determined based on the computed weight function, where the set of orthonormal polynomials comprises a set of orthogonal eigenfunctions of a Sturm-Liouville differential equation. Values for a plurality of zeros for one of the set of orthonormal polynomials is determined that comprise resampling points for the plurality of discrete curves. Each of the plurality of discrete curves is resampled based on the determined values of the plurality of zeros.
Abstract:
A system and method for generating a curve in a region, e.g., a Low Discrepancy Curve. The method may generate an unbounded Low Discrepancy Point (LDP); apply one or more boundary conditions to the unbounded LDP to generate a bounded LDP located within the region; repeat said generating and said applying one or more boundary conditions one or more times, generating a Low Discrepancy Sequence (LDS) in the region; store the LDS; and generate output comprising the LDS, wherein the LDS defines the curve in the region. The method may scan the region according to the defined curve. In generating the unbounded LDP, the method may select two or more irrational numbers, a step size epsilon (ε), and a starting position; initialize a current position to the starting position; and increment components of the current position based on ε and the irrational numbers to generate the unbounded LDP.
Abstract:
A system and method for generating a curve, such as a Low Discrepancy Curve, on a surface, such as an abstract surface with a Riemannian metric. The system may comprise a computer which includes a CPU and a memory medium which is operable to store one or more programs executable by the CPU to perform the method. The method may: 1) parameterize the surface; 2) select a curve, such as a Low Discrepancy Curve, in a parameter space, for example, a simple space such as a unit square; 3) re-parameterize the surface, for example, re-parameterize the surface such that a ratio of line and area elements of the surface based on a Riemannian metric is constant; and 4) map the curve onto the surface using the re-parameterization. The method may also generate output comprising information regarding the mapped curve, for example, displaying the mapped curve on a display device.