Abstract:
In a wireless code-division multiple access (CDMA) system (100), a talkgroup (101) of subscriber units is provided. A sub-talkgroup (102) of subscriber units, forming a part of the talkgroup is assigned at least one inbound channel (416-417). The talkgroup is assigned outbound channels (415). Members of the sub-talkgroup may simultaneously transmit voice information (410-411) using the at least one inbound channel, which voice information is summed (412) and re-transmitted to the talkgroup using the outbound channels. Voice information is summed so that an individual talker receives summed voice information without the individual subscriber's voice content. Subscriber units in the sub-listengroup are allowed to transmit voice information only after requesting, and receiving, an additional inbound channel.
Abstract:
Methods and systems are provided for routing callers to agents in a call-center routing environment. An exemplary method includes identifying caller data for at least one of a set of callers on hold and causing a caller of the set of callers to be routed to an agent based on a comparison of the caller data and the agent data. The caller data and agent data may be compared via a pattern matching algorithm and/or computer model for predicting a caller-agent pair having the highest probability of a desired outcome. As such, callers may be pooled and routed to agents based on comparisons of available caller and agent data, rather than a conventional queue order fashion. If a caller is held beyond a hold threshold the caller may be routed to the next available agent. The hold threshold may include a predetermined time, “cost” function, number of times the caller may be skipped by other callers, and so on.
Abstract:
Systems and methods are disclosed for routing callers to agents in a contact center, along with an intelligent routing system. An exemplary method includes mapping a first portion of callers to agents according to a performance and/or pattern matching algorithm based on comparing caller data associated with the callers and agent data associated with the agents and mapping a second portion of the callers (e.g., the remaining portion callers) to agents differently than the first portion of the callers (e.g., mapping based on queue order), which may provide a control group for monitoring or analyzing the effect and/or training of the pattern matching algorithm. The first and second portion may be varied separately for each agent within the contact center. The method may further include displaying the effect of the routing on at least one outcome variable, which may include revenue generation, cost, customer satisfaction, first call resolution, cancellation, or other variable outputs from the pattern matching algorithm of the system.
Abstract:
In the present technique of streaming a main media stream that has been requested, an anti-shadow stream (36) that represents a backup copy of the main media stream (24) is sent along with an output media stream (34) that represents an output copy of the main media stream. The content of the anti-shadow stream (36) is preferably forward-shifted in time from the output media stream (34) so as to provide replacement of loss data of the output stream. Put differently, sequenced data frames of the output stream (34) are delayed by order compared to that of the anti-shadow stream (36).
Abstract:
An apparatus and method for throttling server communications in a communication network. Firstly, priorities are defined by a watcher for particular status events. These priorities are then mapped to a list of status events in an event filter. In response to a change of status event of a presentity, the status event is compared to the list of status events of the event filter. If the comparable status event has an associated higher priority, a notification is sent of the change of status event to the watcher with substantially no delay. If the comparable status notification event has an associated lower priority, the status event is filtered in the event filter, and sent to the watcher, as needed, during a predetermined interval. A unique priority code can be defined for events and/or a maximum delay for sending a notification of an event change can be defined for events.
Abstract:
Methods and systems are provided for routing callers to agents in a call-center routing environment. An exemplary method includes identifying caller data for at least one of a set of callers on hold and causing a caller of the set of callers to be routed to an agent based on a comparison of the caller data and the agent data. The caller data and agent data may be compared via a pattern matching algorithm and/or computer model for predicting a caller-agent pair having the highest probability of a desired outcome. As such, callers may be pooled and routed to agents based on comparisons of available caller and agent data, rather than a conventional queue order fashion. If a caller is held beyond a hold threshold the caller may be routed to the next available agent. The hold threshold may include a predetermined time, “cost” function, number of times the caller may be skipped by other callers, and so on.
Abstract:
Methods and systems are provided for routing callers to agents in a call-center routing environment. An exemplary method includes identifying caller data for a caller of a plurality of callers in a queue, and routing the caller from the queue out of queue order. For example, a caller that is not at the top of the queue may be routed from the queue based on the identified caller data, out of order with respect to the queue order. The caller may be routed to another queue of callers, a pool of callers, or an agent based on the identified caller data, where the caller data may include one or both of demographic and psychographic data. The caller may be routed from the queue based on comparing the caller data with agent data associated with an agent via a pattern matching algorithm and/or computer model for predicting a caller-agent pair outcome. Additionally, if a caller is held beyond a hold threshold (e.g., a time, “cost” function, or the like) the caller may be routed to the next available agent.
Abstract:
Methods and systems are provided for routing callers to agents in a call-center routing environment. An exemplary method includes routing a caller from a pool of callers based on at least one caller data associated with the caller, where a pool of callers includes, e.g., a set of callers that are not chronologically ordered and routed based on a chronological order or hold time of the callers. The caller may be routed from the pool of callers to an agent, placed in another pool of callers, or placed in a queue of callers. The caller data may include demographic or psychographic data. The caller may be routed from the pool of callers based on comparing the caller data with agent data associated with an agent via a pattern matching algorithm and/or computer model for predicting a caller-agent pair outcome. Additionally, if a caller is held beyond a hold threshold (e.g., a time, “cost” function, or the like) the caller may be routed to the next available agent.
Abstract:
Methods and systems are provided for routing callers to agents in a call-center routing environment. An exemplary method includes pooling incoming callers, and causing a caller from the pool of callers to be routed. The caller may be routed from the pool of callers to an agent, placed in another pool of callers, or placed in a queue of callers. The caller data may include demographic or psychographic data. The caller may be routed from the pool of callers based on comparing the caller data with agent data associated with an agent via a pattern matching algorithm and/or computer model for predicting a caller-agent pair outcome. Additionally, if a caller is held beyond a hold threshold (e.g., a time, “cost” function, or the like) the caller may be routed to the next available agent.
Abstract:
Various embodiments are described to enable improved inter-network/inter-technology handover of mobile devices. A network device (131, 132) collects dynamic information corresponding to mobile devices (101, 102), such as wireless measurement information at the device's location, and/or information corresponding to wireless network nodes (121-124), such loading levels/loading distributions. The network device then sends some or all of the dynamic information collected and/or statistical information generated from the dynamic information collected to a neighboring network information server (150) for access by other communication networks. By maintaining dynamic and/or statistical information in a neighboring network information server, such information can be made available to all the communication networks in a given region. One potential benefit to making this information available is improved inter-network handoff decision-making.