Abstract:
A hand-held power tool includes an electric motor, a tool unit, and at least one operating unit. A motor switching unit is configured to sense a contact-pressure characteristic between the tool unit and the operating unit, and configured to switch the electric motor at least partially in dependence on the contact-pressure characteristic.
Abstract:
A method for detecting a transmission backlash in a hand-held power tool, the hand-held power tool comprising a drive motor that has a drive shaft, a tool spindle, and a transmission that, in respect of drive, connects the drive shaft to the tool spindle, includes actuating, in a first actuation, the drive motor at least until the value of a first variable, representing a drag torque, is at least approximately constant. The method includes, during the first actuation, determining a value of a second variable which is associated with the rotation of the drive shaft of the drive motor during the first actuation, and determining a value of a third variable, representing a transmission backlash, based upon a change in the second variable during the first actuation.
Abstract:
A method for detecting a transmission backlash in a hand-held power tool, the hand-held power tool comprising a drive motor that has a drive shaft, a tool spindle, and a transmission that, in respect of drive, connects the drive shaft to the tool spindle, includes actuating, in a first actuation, the drive motor at least until the value of a first variable, representing a drag torque, is at least approximately constant. The method includes, during the first actuation, determining a value of a second variable which is associated with the rotation of the drive shaft of the drive motor during the first actuation, and determining a value of a third variable, representing a transmission backlash, based upon a change in the second variable during the first actuation.
Abstract:
The disclosure is based on a sensor device, in particular a hand-held power-tool sensor device, for identifying an uncontrolled occurrence of jamming in the case of a hand-held power tool, having at least one sensor unit, which is provided to sense at least one motion characteristic value of the hand-held power tool, and having a protective unit, which is provided to control the hand-held power tool in dependence on at least one triggering threshold value and the at least one motion characteristic value. It is proposed that the protective unit be provided to set the at least one triggering threshold value in a variable manner and/or to define at least one further triggering threshold value.
Abstract:
The disclosure is based on a sensor device, in particular a hand-held power-tool sensor device, for identifying an uncontrolled occurrence of jamming in the case of a hand-held power tool, having at least one sensor unit, which is provided to sense at least one motion characteristic value of the hand-held power tool, and having a protective unit, which is provided to control the hand-held power tool in dependence on at least one triggering threshold value and the at least one motion characteristic value. It is proposed that the protective unit be provided to set the at least one triggering threshold value in a variable manner and/or to define at least one further triggering threshold value.
Abstract:
A hand-held power tool device comprises an impact tool unit configured to generate a pulse on an insertion tool, and a sensor unit configured to detect at least one of at least one operating parameter, and at least one ambient parameter. The sensor unit includes at least one sensor element configured to detect a spatial position of the impact tool unit.
Abstract:
A hand-held power tool device comprises an impact tool unit configured to generate a pulse on an insertion tool, and a sensor unit configured to detect at least one of at least one operating parameter, and at least one ambient parameter. The sensor unit includes at least one sensor element configured to detect a spatial position of the impact tool unit.
Abstract:
A hand-held power tool device comprises an impact tool unit, an impact detection unit, and a blocking detection unit. The impact tool unit is configured to drive an insertion tool at least partially in at least one of a rotational fashion and a translatory fashion. The impact detection unit is configured to detect at least one impact parameter, such as linear acceleration running at least substantially parallel to a processing axis of the insertion tool. The blocking detection unit is configured to detect at least one blocking parameter, such as at least one an angular acceleration about the processing axis of the insertion tool. The impact detection unit and the blocking detection unit are formed at least partially as one-piece.