摘要:
An electronic device may have a housing in which an antenna is mounted. An antenna window may be mounted in the housing to allow radio-frequency signals to be transmitted from the antenna and to allow the antenna to receive radio-frequency signals. Near-field radiation limits may be satisfied by reducing transmit power when an external object is detected in the vicinity of the dielectric antenna window and the antenna. A capacitive proximity sensor may be used in detecting external objects in the vicinity of the antenna. The proximity sensor may have conductive layers separated by a dielectric. A capacitance-to-digital converter may be coupled to the proximity sensor by inductors. The capacitive proximity sensor may be interposed between an antenna resonating element and the antenna window. The capacitive proximity sensor may serve as a parasitic antenna resonating element and may be coupled to the housing by a capacitor.
摘要:
Electronic devices are provided that contain wireless communications circuitry. The wireless communications circuitry may include radio-frequency transceiver circuitry and antenna structures. The antenna structures may include antennas such as inverted-F antennas that contain antenna resonating elements and antenna ground elements. Antenna resonating elements may be formed from patterned conductive traces on substrates such as flex circuit substrates. Antenna ground elements may be formed from conductive device structures such as metal housing walls. Support and biasing structures such as dielectric support members and layer of foam may be used to support and bias antenna resonating elements against planar device structures. The planar device structures against which the antenna resonating elements are biased may be planar dielectric members such as transparent layers of display cover glass or other planar structures. Adhesive may be interposed between the planar structures and the antenna resonating elements.
摘要:
An electronic device may have a cavity antenna. The cavity antenna may have a logo-shaped dielectric window. An antenna resonating element for the cavity antenna may be formed from conductive traces on a printed circuit board. An antenna resonating element may be formed from the traces. The antenna resonating element may be mounted on an antenna support structure. A conductive cavity structure for the cavity antenna may have a planar lip that is mounted flush with an interior surface of a conductive housing wall. The cavity structure may have more than one depth. Shallower planar portions of the cavity structure may lie in a plane. The antenna resonating element may be located between the plane of the shallow cavity walls and an external surface of the conductive housing wall.
摘要:
An electronic device may have a housing in which an antenna is mounted. An antenna window may be mounted in the housing to allow radio-frequency signals to be transmitted from the antenna and to allow the antenna to receive radio-frequency signals. Near-field radiation limits may be satisfied by reducing transmit power when an external object is detected in the vicinity of the dielectric antenna window and the antenna. A capacitive proximity sensor may be used in detecting external objects in the vicinity of the antenna. The proximity sensor may have conductive layers separated by a dielectric. A capacitance-to-digital converter may be coupled to the proximity sensor by inductors. The capacitive proximity sensor may be interposed between an antenna resonating element and the antenna window. The capacitive proximity sensor may serve as a parasitic antenna resonating element and may be coupled to the housing by a capacitor.
摘要:
An electronic device may have a housing in which an antenna and a proximity sensor formed from flex circuit structures are mounted. The flex circuit structures may include first and second flex circuit layers. The first and second flex circuit layers may include metal antenna structures and metal proximity sensor electrode structures. Solder may be used to attach electrical components to the flex circuit layers and may be used to electrically connect metal structures on the first and second flex circuit layers to each other. The first and second flex circuit layers may be laminated together using a compressive fixture. The compressive fixture may have a first fixture with a convex surface and a second fixture with a concave surface so that the laminated flex circuit layers are provided with a bend.
摘要:
An electronic device may have a housing in which an antenna and a proximity sensor formed from flex circuit structures are mounted. The flex circuit structures may include first and second flex circuit layers. The first and second flex circuit layers may include metal antenna structures and metal proximity sensor electrode structures. Solder may be used to attach electrical components to the flex circuit layers and may be used to electrically connect metal structures on the first and second flex circuit layers to each other. The first and second flex circuit layers may be laminated together using a compressive fixture. The compressive fixture may have a first fixture with a convex surface and a second fixture with a concave surface so that the laminated flex circuit layers are provided with a bend.
摘要:
Logo antennas are provided for electronic devices such as portable computers. An electronic device may have a housing with conductive housing walls. A logo antenna may be formed from an antenna resonating element such as a patch antenna resonating element, a monopole antenna resonating element, or other antenna resonating element structure. A conductive cavity may be placed behind the antenna resonating element. A dielectric antenna window that serves as a logo may be used to cover the antenna resonating element. The dielectric antenna window may be mounted in an opening in the conductive housing walls. A positive antenna feed terminal may be coupled to the antenna resonating element. A ground antenna feed terminal may be coupled to the cavity and portions of the conductive housing walls. The dielectric antenna window may be shaped in the form of a logo.
摘要:
Antennas are provided for electronic devices such as portable computers. An electronic device may have a housing in which an antenna is mounted. The housing may have an antenna window for the antenna. The antenna window may be formed from dielectric or from antenna window slots in a conductive member such as a conductive wall of the electronic device housing. An antenna may have an antenna resonating element that is backed by a conductive antenna cavity. The antenna resonating element may have antenna resonating element slots or may be formed using other antenna configurations such as inverted-F configurations. The antenna cavity may have conductive vertical sidewalls and a conductive rear wall. The antenna cavity walls may be formed from conductive layers on a dielectric antenna support structure.
摘要:
Antennas are provided for electronic devices such as portable computers. An electronic device may have a housing in which an antenna is mounted. The housing may have an antenna window for the antenna. The antenna window may be formed from dielectric or from antenna window slots in a conductive member such as a conductive wall of the electronic device housing. An antenna may have an antenna resonating element that is backed by a conductive antenna cavity. The antenna resonating element may have antenna resonating element slots or may be formed using other antenna configurations such as inverted-F configurations. The antenna cavity may have conductive vertical sidewalls and a conductive rear wall. The antenna cavity walls may be formed from conductive layers on a dielectric antenna support structure.
摘要:
Logo antennas are provided for electronic devices such as portable computers. An electronic device may have a housing with conductive housing walls. A logo antenna may be formed from an antenna resonating element such as a patch antenna resonating element, a monopole antenna resonating element, or other antenna resonating element structure. A conductive cavity may be placed behind the antenna resonating element. A dielectric antenna window that serves as a logo may be used to cover the antenna resonating element. The dielectric antenna window may be mounted in an opening in the conductive housing walls. A positive antenna feed terminal may be coupled to the antenna resonating element. A ground antenna feed terminal may be coupled to the cavity and portions of the conductive housing walls. The dielectric antenna window may be shaped in the form of a logo.