Abstract:
Circuits, methods, and apparatus that limit the number of types of connectors needed by an electronic device. One example may provide a connector receptacle capable of adapting to multiple types of connector inserts. In this way, connector inserts conveying one of a number of interfaces can be accepted by the same connector receptacle. This may reduce the number and types of connector receptacles needed on an electronic device.
Abstract:
An electronic device may be provided with a conductive housing. The conductive housing may be formed from a metal. Slots may be formed in the housing. The slots may serve as an antenna and may be fed using an antenna feed structure within the electronic device housing. The electronic device may have a frame to which housing structures are attached and may have a stand or other support structure. The frame may be used to mount a display, to support housing walls, to support clutch barrel structures, etc. The slots may be formed in the frame or in a space between the frame and the housing walls. The slots or other antenna structures may also be formed in the stand. Multiple slots may be used together to support operations in two or more communications bands. There may be multiple dual slot antennas in the electronic device.
Abstract:
Connector receptacles that provide a right-angle translation, may be readily manufactured, and may have an aesthetically pleasing appearance. One example may provide a connector receptacle having contacts that provide a right-angle translation. Another example may provide a connector receptacle having an aesthetically pleasing appearance. By inserting an injection molded housing into an over-mold, the interior of a connector may appear to be formed from a single piece of plastic or other material.
Abstract:
A computing device includes a Mini DisplayPort or other standardized plug and port connection that is fully internalized within the full device housing. The port can be affixed or coupled to a printed circuit board, with a display cable having a mating plug that is plugged into the port. To prevent the inadvertent uncoupling of the plug from the port, one or more clips, clamps, fixtures, or other cable retention components can hold the cable and/or plug in place at or near where the plug inserts into the Mini DisplayPort or other standardized communication port. Added stability to the cable can also be provided at or near such location.
Abstract:
An electronic device may be provided with a conductive housing. The conductive housing may be formed from a metal. Slots may be formed in the housing. The slots may serve as an antenna and may be fed using an antenna feed structure within the electronic device housing. The electronic device may have a frame to which housing structures are attached and may have a stand or other support structure. The frame may be used to mount a display, to support housing walls, to support clutch barrel structures, etc. The slots may be formed in the frame or in a space between the frame and the housing walls. The slots or other antenna structures may also be formed in the stand. Multiple slots may be used together to support operations in two or more communications bands. There may be multiple dual slot antennas in the electronic device.
Abstract:
Wireless portable electronic devices such as laptop computers are provided with antennas. An antenna may be provided within a clutch barrel in a laptop computer. The clutch barrel may have a dielectric cover. Antenna elements may be mounted within the clutch barrel cover on an antenna support structure. There may be two or more antenna elements mounted to the antenna support structure. These antenna elements may be of different types. A first antenna element for the clutch barrel antenna may be formed from a dual band antenna element having a closed slot and an open slot. A second antenna element for the clutch barrel antenna may be formed from a dual band antenna element of a hybrid type having a planar resonating element arm and a slot resonating element. Flex circuit structures may be used in implanting the first and second antenna elements for the clutch barrel antenna.
Abstract:
An electronic device may be provided with a conductive housing. The conductive housing may be formed from a metal. Slots may be formed in the housing. The slots may serve as an antenna and may be fed using an antenna feed structure within the electronic device housing. The electronic device may have a frame to which housing structures are attached and may have a stand or other support structure. The frame may be used to mount a display, to support housing walls, to support clutch barrel structures, etc. The slots may be formed in the frame or in a space between the frame and the housing walls. The slots or other antenna structures may also be formed in the stand. Multiple slots may be used together to support operations in two or more communications bands. There may be multiple dual slot antennas in the electronic device.
Abstract:
Logo antennas are provided for electronic devices such as portable computers. An electronic device may have a housing with conductive housing walls. A logo antenna may be formed from an antenna resonating element such as a patch antenna resonating element, a monopole antenna resonating element, or other antenna resonating element structure. A conductive cavity may be placed behind the antenna resonating element. A dielectric antenna window that serves as a logo may be used to cover the antenna resonating element. The dielectric antenna window may be mounted in an opening in the conductive housing walls. A positive antenna feed terminal may be coupled to the antenna resonating element. A ground antenna feed terminal may be coupled to the cavity and portions of the conductive housing walls. The dielectric antenna window may be shaped in the form of a logo.
Abstract:
Electronic device antennas with multiple parallel plate sectors are provided for handling multiple-input-multiple-output wireless communications. Each antenna sector in a multisector parallel plate antenna may have upper and lower parallel plates with curved outer edges and a straight inner edge. A vertical rear wall may be used to connect the upper and lower parallel plates in each antenna sector along the straight inner edge. Each antenna sector may have an antenna probe. The antenna probe may be formed from a monopole antenna loaded with a planar patch. The planar loading patch may be provided in the form of a conductive disk that is connected to the end of a conductive antenna feed member. The conductive member may be coupled to the center conductor of a transmission line that is used to convey radio-frequency signals between the antenna probe and radio-frequency transceiver circuitry. The antenna sectors may have interplate dielectric structures.
Abstract:
Wireless portable electronic devices such as laptop computers are provided with cavity-backed monopole antennas. A wireless device may have a housing. Conductive portions of the housing such as a conductive outer metal layer and internal frame structures may form a cavity having conductive walls. An antenna resonating element structure may be formed from monopole antenna resonating element arms of dissimilar lengths. One of the arms may be straight and another of the arms may be implemented using a meandering path. The antenna resonating element may be mounted over the cavity to form a cavity-backed monopole antenna. A display within the device may be covered by a cover glass. An opaque bezel region around the periphery of the cover glass may cover the antenna and block it from view. The antenna resonating element arms may run parallel to the longitudinal axis of the cavity.