Abstract:
A dielectric heating section for a blow molding machine is provided. Within the heating section a plurality of heating stations are defined by electrode pairs. At least one electrode of each pair is made recontourable to achieve the desired temperature profile within the wall section of a thermoplastic preform suspended therebetween. The preforms are rotated while supported within the alternating electric field created between the electrodes when the electrodes are energized by a radio frequency signal generator. The preforms are moved from station-to-station to achieve high rate controlled heating of each preform.
Abstract:
A reheat blow mold machine includes a preform loader, an oven, a mold station and a preform transfer mechanism for transporting preforms form the oven to the mold station. A loader defines a plurality of lanes within which the preforms are supported. A reciprocal jaw assembly moves the preforms from a receiving end to a load end of the oven. The oven includes a plurality of tandemly arranged abutting pallets which rotatably support the preforms. The pallets are stepped through the oven and moved between a receiving end and a discharge end by a pair of elevators and a return conveyor. The transfer mechanism includes two sets of jaw assemblies, a pair of slidable actuators and a compensation mechanism to automatically adjust for tolerance variations in the diameter of the performs. A mold station includes a pair of opposed platens which support mold halves. A bottom platen is positioned by a cam arrangement mounted on the opposed platens.
Abstract:
A reheat blow mold machine includes a preform loader, an oven, a mold station and a preform transfer mechanism for transporting preforms form the oven to the mold station. A loader defines a plurality of lanes within which the preforms are supported. A reciprocal jaw assembly moves the preforms from a receiving end to a load end of the oven. The oven includes a plurality of tandemly arranged abutting pallets which rotatably support the preforms. The pallets are stepped through the oven and moved between a receiving end and a discharge end by a pair of elevators and a return conveyor. The transfer mechanism includes two sets of jaw assemblies, a pair of slidable actuators and a compensation mechanism to automatically adjust for tolerance variations in the diameter of the performs. A mold station includes a pair of opposed platens which support mold halves. A bottom platen is positioned by a cam arrangement mounted on the opposed platens.
Abstract:
A reheat blow mold machine includes a preform loader, an oven, a mold station and a preform transfer mechanism for transporting preforms from the oven to the mold station. A loader defines a plurality of lanes within which the preforms are supported. A reciprocal jaw assembly moves the preforms from a receiving end to a load end of the oven. The oven includes a plurality of tandemly arranged abutting pallets which rotatably support the preforms. The pallets are stepped through the oven and moved between a receiving end and a discharge end by a pair of elevators and a return conveyor. The transfer mechanism includes two sets of jaw assemblies, a pair of slidable actuators and a compensation mechanism to automatically adjust for tolerance variations in the diameter of the preforms. A mold station includes a pair of opposed platens which support mold halves. A bottom platen is positioned by a cam arrangement mounted on the opposed platens.
Abstract:
An article carrier is provided for blow molding equipment which permits relatively simple exchange of the article gripping chuck portion of the carrier. The carrier includes a carrier body, a spindle rotatably supported by the body, an article gripping chuck removeably attached to the spindle and seals between the chuck and the spindle and between the chuck and a preform retained thereby. The chuck is provided with article gripping levers preferably rotatably supported by ball and socket joints. The levers have preform grasping projections at one end and first and second ball ends at the other end. The first ball end mates with the chuck body socket and the second ball end is engaged by a lever actuating ring slidably mounted on the outside of the chuck body.
Abstract:
A machine for high rate production of molecularly oriented thermoplastic bottles is disclosed. The machine is of the reheat-and-blow type. A blow molding station simultaneously blow molds article preforms arranged in matrices by modular article carriers for conveying the preforms and articles through the machine. The carriers are designed to retain the preforms throughout all operations of the machine from a preform load station through a thermal conditioning section, a blow molding station, and to a bottle eject station, thereby eliminating the need for other preform transferring apparatus. The article carriers together with the associated conveying apparatus comprise a sufficiently flexible structure that minor misalignments of the carriers with the blow molding mechanism do not adversely affect bottle production. Both loading of preforms and ejection of finished bottles are accomplished by operation upon matrices of preforms and bottles as defined by the carriers and conveyor lanes.
Abstract:
A machine for high rate production of molecularly oriented thermoplastic bottles is disclosed. The machine is of the reheat-and-blow type. A blow molding station simultaneously blow molds article preforms arranged in matrices by modular article carriers for conveying the preforms and articles through the machine. The carriers are designed to retain the preforms throughout all operations of the machine from a preform load station through a thermal conditioning section, a blow molding station, and to a bottle eject station, thereby eliminating the need for other preform transferring apparatus. The article carriers together with the associated conveying apparatus comprise a sufficiently flexible structure that minor misalignments of the carriers with the blow molding mechanism do not adversely affect bottle production. Both loading of preforms and ejection of finished bottles are accomplished by operation upon matrices of preforms and bottles as defined by the carriers and conveyor lanes.
Abstract:
A machine for high rate production of molecularly oriented thermoplastic bottles is disclosed. The machine is of the reheat-and-blow type. A blow molding station simultaneously blow molds article preforms arranged in matrices by modular article carriers for conveying the preforms and articles through the machine. The carriers are designed to retain the performs throughout all operations of the machine from a preform load station through a thermal conditioning section, a blow molding station, and to a bottle eject station, thereby eliminating the need for other preform transferring apparatus. The article carriers together with the associated conveying apparatus comprise a sufficiently flexible structure that minor misalignments of the carriers with the blow molding mechanism do not adversely affect bottle production. Both loading of preforms and ejection of finished bottles are accomplished by operation upon matrices of preforms and bottles as defined by the carriers and conveyor lanes.