摘要:
There is provided a polymer secondary battery using silicon and silicon oxide as a negative electrode active material that shows a high capacity retention rate also when a charge and discharge cycle is repeated. A polymer secondary battery including a positive electrode, a negative electrode, a separator interposed between the positive electrode and the negative electrode, and a polymer-containing gel electrolyte, wherein the negative electrode includes silicon and silicon oxide as a negative electrode active material, and the polymer-containing gel electrolyte is present in voids formed by fine division of particles of the negative electrode active material.
摘要:
There is provided a negative electrode for a nonaqueous electrolyte secondary battery in which when a battery is formed, the energy density is high, and moreover, the decrease in charge and discharge capacity is small even if charge and discharge are repeated. By using silicon oxide particles having a particle diameter in a particular range as a starting raw material, and heating these particles in the range of 850° C. to 1050° C., Si microcrystals are deposited on the surfaces of the particles. Then, by performing doping of Li, a structure comprising a plurality of protrusions having height and cross-sectional area in a particular range is formed on the surfaces. The average value of the height of the above protrusions is 2% to 19% of the average particle diameter of the above lithium-containing silicon oxide particles. By using the lithium-containing silicon oxide particles obtained by the above means as a negative electrode active material, a negative electrode for a nonaqueous electrolyte secondary battery is fabricated.
摘要:
There is provided a negative electrode for a nonaqueous electrolyte secondary battery in which when a battery is formed, the energy density is high, and moreover, the decrease in charge and discharge capacity is small even if charge and discharge are repeated. By using silicon oxide particles having a particle diameter in a particular range as a starting raw material, and heating these particles in the range of 850° C. to 1050° C., Si microcrystals are deposited on the surfaces of the particles. Then, by performing doping of Li, a structure comprising a plurality of protrusions having height and cross-sectional area in a particular range is formed on the surfaces. The average value of the height of the above protrusions is 2% to 19% of the average particle diameter of the above lithium-containing silicon oxide particles. By using the lithium-containing silicon oxide particles obtained by the above means as a negative electrode active material, a negative electrode for a nonaqueous electrolyte secondary battery is fabricated.
摘要:
Provided is a negative electrode active material for a lithium secondary cell, the material having the function of a binder for the active material, and being capable of stable reversible reactions with lithium. Also, provided are an extended-life lithium secondary cell having improved energy density and stable charge/discharge, and a method for producing the same. The negative electrode active material for a lithium secondary cell is polyimide represented by formula (1) (wherein R1 and R2 independently denote an alkyl, alkoxy, acyl, phenyl, or phenoxy group).
摘要:
Provided is a negative electrode active material for a lithium secondary cell, the material having the function of a binder for the active material, and being capable of stable reversible reactions with lithium. Also, provided are an extended-life lithium secondary cell having improved energy density and stable charge/discharge, and a method for producing the same. The negative electrode active material for a lithium secondary cell is polyimide represented by formula (1) (wherein R1 and R2 independently denote an alkyl, alkoxy, acyl, phenyl, or phenoxy group).
摘要:
The object of an exemplary embodiment of the invention is to provide a negative electrode having excellent cycle property. An exemplary embodiment of the invention a method for doping and dedoping lithium for the first time after a negative electrode for a lithium secondary battery comprising silicon oxide as an active material is produced, comprising doping the lithium within the following current value range (A) and within the following doped amount range (B); current value range (A): a range of a current value in which a doped amount in which only one peak appears at 1 V or less on the V-dQ/dV curve becomes maximum, wherein the V-dQ/dV curve represents a relationship between voltage V of the negative electrode with respect to a lithium reference electrode and dQ/dV that is a ratio of variation dQ of lithium dedoped amount Q in the negative electrode to variation dV of the voltage V, and doped amount range (B): a range of a doped amount in which only one peak appears at 1 V or less on the V-dQ/dV curve.
摘要:
The object of an exemplary embodiment of the invention is to provide a negative electrode having excellent cycle property. An exemplary embodiment of the invention a method for doping and dedoping lithium for the first time after a negative electrode for a lithium secondary battery comprising silicon oxide as an active material is produced, comprising doping the lithium within the following current value range (A) and within the following doped amount range (B); current value range (A): a range of a current value in which a doped amount in which only one peak appears at 1 V or less on the V-dQ/dV curve becomes maximum, wherein the V-dQ/dV curve represents a relationship between voltage V of the negative electrode with respect to a lithium reference electrode and dQ/dV that is a ratio of variation dQ of lithium dedoped amount Q in the negative electrode to variation dV of the voltage V, and doped amount range (B): a range of a doped amount in which only one peak appears at 1 V or less on the V-dQ/dV curve.
摘要:
Provided is a lithium secondary cell in which elution of manganese from a manganese olivine compound into an electrolyte is suppressed, a high level of safety is obtained, the charge/discharge cycle efficiency and suppression of leakage of manganese during storage can be maintained over a long period, a long lifespan is obtained, a rapid decrease in cell voltage near the end of discharge is suppressed, and output characteristics are enhanced, when a manganese olivine compound having excellent stability during charge/discharge is used as the principal component in the positive electrode active material. The positive electrode contains a positive electrode active material containing an olivine compound represented by LiMm1-aXaPO4 (where X represents Mg and/or Fe, and a represents a value that satisfies 0≦a≦0.3) and a lithium nickel oxide represented by LiNi1-bZbO2 (where Z represents one or more selected from Co, Mn, Al, Mg, and V; and b represents a value that satisfies 0≦b≦0.4), the content of the olivine compound being from 50 to 95 mass %.
摘要翻译:本发明提供一种能够抑制锰从锰橄榄石化合物溶解成电解质的锂二次电池,能够获得高水平的安全性,能够在长时间内保持充放电循环效率和锰的泄漏抑制 时间长,寿命长,抑制放电结束附近的电池电压的急剧下降,并且当充放电时的稳定性优异的锰橄榄石化合物作为正极中的主要成分时,能够提高输出特性 活性物质 正极含有含有由LiMm1-aXaPO4(其中X表示Mg和/或Fe,a表示满足0≤a≤0.3的值)的LiMm1-aXaPO4表示的橄榄石化合物的正极活性物质和由LiNi1-aXaPO4表示的锂镍氧化物, bZbO2(其中Z表示选自Co,Mn,Al,Mg和V中的一种或多种; b表示满足0 @ b @ 0.4的值),橄榄石化合物的含量为50〜95质量%。
摘要:
Provided is a nonaqueous electrolytic solution secondary battery having a high energy density, and a positive electrode and a negative electrode used therefor. The nonaqueous electrolytic solution secondary battery includes a positive electrode and a negative electrode, wherein: the negative electrode contains a negative electrode active material having an initial charge/discharge efficiency of 75% or less when charged and discharged by employing metallic Li as a counter electrode; and the positive electrode contains a metal oxide (X) represented by AxMeOy (wherein A is Na and/or K, Me is Ni and/or Cu, x satisfies 1.9≦x≦2.1, and y satisfies 1.9≦y≦2.1).
摘要:
Provided is a nonaqueous electrolytic solution secondary battery having a high energy density, and a positive electrode and a negative electrode used therefor. The nonaqueous electrolytic solution secondary battery includes a positive electrode and a negative electrode, wherein: the negative electrode contains a negative electrode active material having an initial charge/discharge efficiency of 75% or less when charged and discharged by employing metallic Li as a ocounter electrode; and the positive electrode contains a metal oxide (X) represented by AxMeOy (wherein A is Na and/or K, Me is Ni and/or Cu, x satisfies 1.9≦x≦2.1, and y satisfies 1.9≦y≦2.1).
摘要翻译:提供了具有高能量密度的非水电解液二次电池,以及用于其的正极和负极。 非水电解液二次电池包括正极和负极,其中:负极含有通过使用金属Li作为对置电极进行充放电时,初期充放电效率为75%以下的负极活性物质 ; 正极包含由AxMeOy(其中A为Na和/或K,Me为Ni和/或Cu,x满足1.9 @ x @ 2.1,y满足1.9 @ y @ 2.1)的金属氧化物(X)。