Abstract:
A display apparatus includes a first substrate, a second substrate, and a driver chip. The first substrate includes a plurality of gate lines disposed in the display area and extended in a first direction, a plurality of data lines disposed on a gate insulating layer insulating the gate lines and extended in a second direction substantially perpendicular to the first direction, and a gate driving circuit section disposed in the first peripheral area adjacent to first ends of the gate lines. The second substrate is opposite to the first substrate. A liquid crystal is interposed between the first and second substrates. The driver chip is disposed in the second peripheral area adjacent to second ends of the gate lines opposite to the first ends so that the width of the upper and lower portions of the display area may be decreased.
Abstract:
A display substrate includes a display area corresponding to a plurality of pixels, a peripheral area surrounding the display area, a thin film transistor for driving a corresponding one of the pixels, a gate line electrically coupled to the thin film transistor, a data line crossing the gate line and electrically coupled to the thin film transistor, a pixel electrode electrically coupled to the thin film transistor, and a common electrode overlapping the pixel electrode and having a first opening overlapping a first pixel of the pixels, and a second opening overlapping a second pixel of the pixels adjacent the first pixel, wherein the first opening and the second opening extend in different directions, and wherein the common electrode is continuous and overlaps the first and second pixels.
Abstract:
A display substrate includes a display area corresponding to a plurality of pixels, a peripheral area surrounding the display area, a thin film transistor for driving a corresponding one of the pixels, a gate line electrically coupled to the thin film transistor, a data line crossing the gate line and electrically coupled to the thin film transistor, a pixel electrode electrically coupled to the thin film transistor, and a common electrode overlapping the pixel electrode and having a first opening overlapping a first pixel of the pixels, and a second opening overlapping a second pixel of the pixels adjacent the first pixel, wherein the first opening and the second opening extend in different directions, and wherein the common electrode is continuous and overlaps the first and second pixels.
Abstract:
An organic light emitting display apparatus having improved impact resistance includes a bottom substrate including a display area and a peripheral area surrounding the display area; a plurality of organic light emitting devices arranged in the display area of the bottom substrate; a top substrate corresponding to the bottom substrate; a sealing member, which is arranged in the peripheral area of the bottom substrate and attaches the bottom substrate to the top substrate; and an anti-impact member, which is arranged in the peripheral area of the bottom substrate, is apart from the sealing member, and protrudes from the bottom substrate toward the top substrate.