Abstract:
The present disclosure relates to a method and device for providing an edge computing service to a user equipment (UE) in a communication system, and more particularly, to a method and device for managing an identifier of a wireless communication UE so as to provide an edge computing service to the UE. A method according to an embodiment of the present disclosure is a method for managing an identifier of a UE in an edge enabler server of an edge computing system, and the method may comprise the operations of: receiving a first message via a mobile communication network from a UE of a mobile communication system, wherein the first message includes a generic public subscription identifier (GPSI) of the UE, and the received identifier of the UE identifies validity on the basis of a previously received profile of the UE; if the identifier of the UE is valid, binding and storing the identifier of the UE and a UE IP address based on the received first message; and if the identifier of the UE is valid, transmitting a first response message to the UE.
Abstract:
The disclosure provides a method of registering a user equipment (UE) at a second network via a first network, the method including: receiving, from the UE, a registration request message including at least one of first network identification (ID) information, ID information of the UE in the first network, second network ID information, and ID information of the UE in the second network; selecting an authentication server function (AUSF) of the first network which is configured to perform a first authentication procedure of service subscription authentication for the UE in the first network; performing the first authentication procedure with the AUSF of the first network and unified data management (UDM) of the first network; determining, based on a result of the first authentication procedure, whether to perform a second authentication procedure of service subscription authentication for the UE in the second network; performing, based on a result of the determining, the second authentication procedure with an AUSF of the second network and UDM of the second network; and transmitting, to the UE, a registration acceptance message including information of at least one of the result of the first authentication procedure and a result of the second authentication procedure.
Abstract:
The present disclosure relates to a pre-5th-Generation (5G) or 5G communication system to be provided for supporting higher data rates Beyond 4th-Generation (4G) communication system such as long term evolution (LTE). According to various embodiments of the disclosure, an operating method of a user plane function (UPF) in a wireless communication system and an apparatus therefor are provided. The operating method includes receiving a first parameter for clock synchronization from a base station, and performing the clock synchronization with a neighboring network system using the received first parameter and a second parameter. The first parameter may include information relating to a link delay time between the neighboring network system and a network system comprising the UPF, and a residence time of a terminal, a base station and the UPF of the network system comprising the UPF, and the second parameter may include information relating to a backhaul delay time between the base station and the UPF.
Abstract:
The present invention relates to a communication system and method for merging, with IoT technology, a 5G communication system for supporting a data transmission rate higher than that of a 4G system. The present invention provides a system and method by which a user equipment (UE) transmits, to an access and mobility management function (AMF), a first message including information related to a network slice in a first authentication, and receives, from the AMF, a third message including a result of a second authentication, wherein whether to require the second authentication is determined by the AMF based on the information and subscription information, and wherein the second authentication between the UE and a server is triggered based on the determination.
Abstract:
A communication method and system converges a 5G communication system for supporting higher data rates beyond a 4G system with an IoT technology. The system and method may be applied to intelligent services based on the 5G communication technology and the IoT-related technology, such as smart home, smart building, smart city, smart car, connected car, health care, digital education, smart retail, security and safety services. Embodiments provide a scheme for efficiently operating an UP connection of a session in case where a terminal has a plurality of sessions in a mobile communication system, such as a 5G system, having a network structure in which an AMF for mobility management and an SMF for session management are separated from each other. A terminal (UE) can optimize a non-access stratum (NAS) signaling message, and can perform data transmission/reception with low latency.
Abstract:
A communication method and system converges a 5G communication system for supporting higher data rates beyond a 4G system with an IoT technology. The system and method may be applied to intelligent services based on the 5G communication technology and the IoT-related technology, such as smart home, smart building, smart city, smart car, connected car, health care, digital education, smart retail, security and safety services. Embodiments provide a scheme for efficiently operating an UP connection of a session in case where a terminal has a plurality of sessions in a mobile communication system, such as a 5G system, having a network structure in which an AMF for mobility management and an SMF for session management are separated from each other. A terminal (UE) can optimize a non-access stratum (NAS) signaling message, and can perform data transmission/reception with low latency.
Abstract:
A communication method and system converges a 5G communication system for supporting higher data rates beyond a 4G system with an IoT technology. The system and method may be applied to intelligent services based on the 5G communication technology and the IoT-related technology, such as smart home, smart building, smart city, smart car, connected car, health care, digital education, smart retail, security and safety services. Embodiments provide a scheme for efficiently operating an UP connection of a session in case where a terminal has a plurality of sessions in a mobile communication system, such as a 5G system, having a network structure in which an AMF for mobility management and an SMF for session management are separated from each other. A terminal (UE) can optimize a non-access stratum (NAS) signaling message, and can perform data transmission/reception with low latency.
Abstract:
The present disclosure relates to a communication method and system for converging a 5th-Generation (5G) communication system for supporting higher data rates beyond a 4th-Generation (4G) system with a technology for Internet of Things (IoT). The present disclosure may be applied to intelligent services based on the 5G communication technology and the IoT-related technology, such as smart home, smart building, smart city, smart car, connected car, health care, digital education, smart retail, security and safety services. The present disclosure relates to a method for supporting a session continuity for a terminal in a 5G cellular wireless communication system.
Abstract:
A method and an apparatus for processing a handover of a terminal in a mobile communication system are provided. The method includes determining, by a source evolved-NodeB (eNB), a handover of a User Equipment (UE) to a target eNB, obtaining information about content transmitted to the UE from a source cache server connected to the source eNB over a backhaul network, and transmitting the content information to a target eNB.
Abstract:
The disclosure relates to a 5G or 6G communication system for supporting a higher data transmission rate. A method performed by an access and mobility management function (AMF) in a communication system includes receiving, from a user equipment (UE), a registration request message, receiving, from a unified data management (UDM), subscription information for session management function (SMF) selection including an identifier (ID) of a target public land mobile network (PLMN) for traffic routing, and selecting an SMF for traffic routing in the target PLMN based on the ID of the target PLMN included in the subscription information.