Abstract:
A computed tomography (CT) apparatus includes a data acquirer configured to acquire a first image corresponding to a first time point, a second image corresponding to a second time point, and a third image corresponding to a third time point based on a result of a CT scan on an object; an image reconstructor configured to acquire motion information of the object based on an amount of movement of the object between the first and second images and an amount of movement of the object between the first and third images, and obtain a target image by correcting at least one of the first, second and third images based on the motion information; and a display configured to display the target image.
Abstract:
A method and apparatus for setting an imaging environment of a medical apparatus based on one or more signals transmitted from a plurality of clients are provided. The method of setting an imaging environment of a medical apparatus based on one or more signals transmitted from a plurality of clients includes transmitting information regarding an imaging operation of the medical apparatus to the plurality of clients, receiving one or more response signals with respect to the information from the plurality of clients, and setting the imaging environment of the medical apparatus based on the one or more response signals.
Abstract:
A computed tomography apparatus including a gantry rotated along a rail in the shape of a ring is provided. The computed tomography apparatus according to an embodiment includes an x-ray source to radiate x-rays, an x-ray detector to detect the x-rays, a gantry at which the x-ray source and the x-ray detector are mounted, and a rail provided in the shape corresponding to an outer side surface of the gantry, and the gantry is configured to rotate along an inner side surface of the rail.
Abstract:
An apparatus and a method of processing a medical image are provided. The apparatus is configured to generate a cross-sectional image of an object by transmitting X-rays through a region of the object, and includes an X-ray generator configured to generate the X-rays. The apparatus further includes a controller configured to determine sub-regions included in the region, based on positions of body parts included in the region, determine image qualities of the sub-regions based on types of the body parts included in the sub-regions, control doses of the X-rays based on the image qualities, and control the X-ray generator to transmit the controlled X-rays to the region.
Abstract:
An apparatus includes an image analysis unit arranged to extract, from the medical image, brightness intensities of a first body lumen region of the medical image and brightness intensities of a second body lumen region of the medical image; and a measuring unit arranged to calculate a first body lumen value and a second body lumen value, each of the first body lumen value and a second body lumen value being calculated as a predetermined linear combination of the brightness intensities of the corresponding first body lumen region and second body lumen region, and to compare the first body lumen value with the second body lumen value.